Reconfigurable Hardware for Power-over-Fiber Applications

Michael Dreschmann
Overview

- Power-over-Fiber - Introduction

- Demonstrator
 - Analog Front-End
 - Remote platform
 - Base station
 - Performance

- Conclusions
Power-over-Fiber

- Transfer of energy through a glass fiber
- Overall efficiency ~ 10%
- Very robust against electromagnetic interference
 - Outdoor equipment (protection against lightning)
 - Medical instruments (e.g. endoscope)
 - Sensors in EMI problematic areas (high voltage / current applications)
- Glass fibers are difficult to detect
 - No electromagnetic radiation
 - Security & Observation system
- Limited power budget at remote platform
 - Special consideration on power consumption

Transfer of energy through a glass fiber
Overall efficiency ~ 10%
Very robust against electromagnetic interference
 - Outdoor equipment (protection against lightning)
 - Medical instruments (e.g. endoscope)
 - Sensors in EMI problematic areas (high voltage / current applications)
Glass fibers are difficult to detect
 - No electromagnetic radiation
 - Security & Observation system
Limited power budget at remote platform
 - Special consideration on power consumption
Demonstrator

- Video sensor
 - 640 x 480 pixels @ 25 fps
 - Movable (remote controlled)

- Web interface
 - Live video stream (M-JPEG)

- Downlink
 - 100 KBit/s
 - Manchester coded

- Uplink
 - 160 MBit/s
 - 8B10B coded
Demonstrator

- **Base station**
 - Virtex-5 FPGA (ML509)
 - High power laser and driver

- **Remote platform**
 - High efficiency photovoltaic converter and power supply
 - Energy reservoir: 50 F gold cap capacitor
 - Two servo motors and video sensor
 - Digital signal processing
FPGAs in Power-over-Fiber Applications

- Highly adaptable interfaces
 - Support for many different kinds of sensors and actuators
 - Mostly no additional components required

- Fiber communication
 - Communication protocol and line codes adaptable to the requirements of the PoF network
 - Minimal external components

- Power optimized designs
 - Only required modules are configured
 - Clock speed of various modules adaptable
 -> suitable microcontrollers require more power

- High processing power
 - Data preprocessing at the remote platform to reduce bandwidth
Analog Front-End – Downlink

- High-power laser diode - 0.8 W at 808 nm
- Photovoltaic converter - 40% conversion efficiency
- Available power at remote platform - 320mW
- 100 KBit/s communication bandwidth

Diagram:

- **Base Station**
 - Modulation Depth
 - 0.8W HP-Laserdiode
 - 1.8A Photoconverter

- **Remote Platform**
 - Comparator
 - Transimpedance Amplifier
 - 100 KBit/s communication bandwidth
Remote platform

- Combination of FPGA and microcontroller
 - FPGA (Actel Igloo) - High speed data processing
 - Microcontroller (MSP430) - Power management
Remote platform – Uplink transmitter

- 8B10B encoding and CRC generation
- Data frame size up to 65536 bytes
- Preprocessing @ 80 MHz
- Final serialization @ 160 MHz
Base station

- Virtex 5 FPGA (ML509 board)
- LEON-3 system-on-chip (Gaisler Research AB)
- Linux operating system
- Additional hardware modules for glass fiber communication and JPEG compression
Base station – Fiber communication

- 8B10B receiver (uplink) and Manchester transmitter (downlink)
- Packet filter and demultiplex based on type information
- Up to three data preprocessing modules
- Highly flexible DMA controller
Base station – Uplink deserializer

- Five times oversampling required - 800 MS/s
- Usage of double data rate input register
- Operating frequency – 400 MHz
- Excessive usage of pipelining

2.5x tx clock
-> 5x oversampling

serial stream input

IDDR/Synchronization

Edge Detector/Timer

Lookup Table

Bit Generator

Syncpattern Detector

Bit Grouping

carrier_detect

start_of_frame

Operating frequency – 400 MHz

Usage of double data rate input register

Excessive usage of pipelining
Complete compression of an image of arbitrary size without processor intervention to JFIF conform JPEG file

Input format RGB or YCbCr

Data transfer via DMA
Base station – Image data processing

- Incoming video data is placed in VGA framebuffer
- VGA controller & JPEG encoder read input data from VGA framebuffer
- JPEG encoder writes encoded JPEG data to JPEG framebuffer
- Processor reads encoded JPEG data from JPEG framebuffer and sends it to the internet
Base station – Software stack

- PoF kernel driver gives access to fiber communication and JPEG hardware
- JPEG encoded video frames are transmitted as Motion-JPEG stream
- Several applets allow remote control of remote platform

Diagram:

- PoF Driver
- System Calls
- Named PIPES
- CGI
- Control Application (Multithreaded)
- MJPEG Streaming Server
- Webserver - User Interface (HTML)

- Status Applet
- Laser Control Applet
- Servo Control Applet
- Camera Control Applet

Note:
- Base station – Software stack
- PoF kernel driver gives access to fiber communication and JPEG hardware
- JPEG encoded video frames are transmitted as Motion-JPEG stream
- Several applets allow remote control of remote platform
Base station – Web interface

- Access via HTTP
- Display of M-JPEG video stream
- Remote control of camera position and further parameters
Performance

Remote platform

<table>
<thead>
<tr>
<th>Component</th>
<th>Power Consumption (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSP430</td>
<td>1</td>
</tr>
<tr>
<td>Analog Front End (RX)</td>
<td>0.5</td>
</tr>
<tr>
<td>Actel Igloo</td>
<td>80</td>
</tr>
<tr>
<td>Video sensor</td>
<td>50</td>
</tr>
<tr>
<td>Analog Front End (TX)</td>
<td>20</td>
</tr>
<tr>
<td>Servo motors (max)</td>
<td>1800</td>
</tr>
<tr>
<td>Total (motors inactive)</td>
<td>160</td>
</tr>
</tbody>
</table>

Performance

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink</td>
<td>100 KBit/s</td>
</tr>
<tr>
<td>Uplink (effective)</td>
<td>128 MBit/s</td>
</tr>
<tr>
<td>Uplink (line)</td>
<td>160 MBit/s</td>
</tr>
<tr>
<td>Video frame rate (actual)</td>
<td>12.5 Frames/s</td>
</tr>
<tr>
<td>Video frame rate (max)</td>
<td>25 Frames/s</td>
</tr>
<tr>
<td>LEON-3 SoC operating frequency</td>
<td>120 MHz</td>
</tr>
<tr>
<td>JPEG Encoder (@ 120 MHz, 640x480)</td>
<td>173 Frames/s</td>
</tr>
</tbody>
</table>
Conclusions

- Power-over-Fiber Demonstrator transferring live video
 - 640 x 480 @ 25 fps (12.5 fps)
 - Two servo motors
 - Energy reservoir for short-time high power output
 - Adaptable to many different kinds of sensors and actuators

- Combination of microcontroller and FPGA
 - Low power consumption, very low standby power consumption
 - High processing power
 - High flexibility

- Wide potential for improvement
 - Reduction of power consumption of remote platform
 - More complex optical powered networks
Thank you for your attention
end of presentation