Improving QoS of Multi-Layer Networks-on-Chip with Partial and Dynamic Reconfiguration of Routers
Goal: Present a Multi-Layer NoC which has low area overhead and provides QoS by using partial reconfiguration features and circuit switching networks.

Motivation: Use less logic as possible for the NoC; NoC should be mainly wires. Use the right kind of NoC switching, which depends on the data being transferred.
Circuit Switching x Packet Switching

Circuit Switching
- Reserve before use
- Waste of resources if not used
+ Deterministic
+ Need small buffer
+ Good for large data exchange

Packet Switching
+ No reserve before use
+ No waste of resources
- Unpredictable timing
- Need bigger buffers
+ Good for small data exchange
 (control packets, acknowledges, monitor information, random data request/response)
Proposed Multi-Layer NoC Architecture

1. Differences
2. Responsiveness
3. Bottleneck on CC
4. Throughput
Types of NoC Routers

- **Packet Switched Router**
 - Arbitration Routing

- **Circuit Switched Router**
 - Arbitration Routing

- **Reconfigurable Circuit Switched Router**
 - No Routing Algorithm
 - No Arbitration
 - No MUXs (router logic)
 - Small buffers
Reconfigurable Router for Xilinx FPGA
120 (5!) Different Fixed Routers

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>000_EWNSL</td>
<td>024_WENSL</td>
<td>048_NEWSL</td>
<td>072_SEWNL</td>
<td>096_LEWNS</td>
<td></td>
</tr>
<tr>
<td>001_EWNLS</td>
<td>025_WENLS</td>
<td>049_NEWLS</td>
<td>073_SEWLN</td>
<td>097_LEWSN</td>
<td></td>
</tr>
<tr>
<td>002_EWSNL</td>
<td>026_WESNL</td>
<td>050_NESWL</td>
<td>074_SENWL</td>
<td>098_LENWS</td>
<td></td>
</tr>
<tr>
<td>003_EWSLN</td>
<td>027_WESLN</td>
<td>051_NESLW</td>
<td>075_SENLW</td>
<td>099_LENSW</td>
<td></td>
</tr>
<tr>
<td>004_EWLNS</td>
<td>028_WELNS</td>
<td>052_NELWS</td>
<td>076_SELWN</td>
<td>100_LESNW</td>
<td></td>
</tr>
<tr>
<td>005_EWLSN</td>
<td>029_WELSN</td>
<td>053_NELSW</td>
<td>077_SELNW</td>
<td>101_LESNW</td>
<td></td>
</tr>
<tr>
<td>006_ENWSL</td>
<td>030_WNESL</td>
<td>054_NWESL</td>
<td>078_SWENL</td>
<td>102_LWENS</td>
<td></td>
</tr>
<tr>
<td>007_ENWLS</td>
<td>031_WNELS</td>
<td>055_NWELS</td>
<td>079_SWENE</td>
<td>103_LWESN</td>
<td></td>
</tr>
<tr>
<td>008_ENSWL</td>
<td>032_WNSEL</td>
<td>056_NWSEL</td>
<td>080_SWNE</td>
<td>104_LWNES</td>
<td></td>
</tr>
<tr>
<td>009_ENSLW</td>
<td>033_WNSLE</td>
<td>057_NWSLE</td>
<td>081_SWNL</td>
<td>105_LWNSE</td>
<td></td>
</tr>
<tr>
<td>010_ENLWS</td>
<td>034_WNLES</td>
<td>058_NWLES</td>
<td>082_SWLEN</td>
<td>106_LWSEN</td>
<td></td>
</tr>
<tr>
<td>011_ENLSW</td>
<td>035_WNLS</td>
<td>059_NWLS</td>
<td>083_SWLN</td>
<td>107_LWSNE</td>
<td></td>
</tr>
<tr>
<td>012_ESWNL</td>
<td>036_WSNL</td>
<td>060_NSEWL</td>
<td>084_SNEWL</td>
<td>108_LNEWS</td>
<td></td>
</tr>
<tr>
<td>013_ESWLN</td>
<td>037_WSLEN</td>
<td>061_NSELW</td>
<td>085_SNELW</td>
<td>109_LNESW</td>
<td></td>
</tr>
<tr>
<td>014_ESNWL</td>
<td>038_WSNEL</td>
<td>062_NSWE</td>
<td>086_SNWEL</td>
<td>110_LNWES</td>
<td></td>
</tr>
<tr>
<td>015_ESNLW</td>
<td>039_WNSLE</td>
<td>063_NSWE</td>
<td>087_SNWLE</td>
<td>111_LNWSE</td>
<td></td>
</tr>
<tr>
<td>016_ESLWN</td>
<td>040_WSENL</td>
<td>064_NSLWE</td>
<td>088_SNLEW</td>
<td>112_LNSEW</td>
<td></td>
</tr>
<tr>
<td>017_ESLNW</td>
<td>041_WSNEL</td>
<td>065_NSLWE</td>
<td>089_SNLWE</td>
<td>113_LNSEW</td>
<td></td>
</tr>
<tr>
<td>018_ELWNS</td>
<td>042_WLEN</td>
<td>066_NLWS</td>
<td>090_SLEWN</td>
<td>114_LSEWN</td>
<td></td>
</tr>
<tr>
<td>019_ELWSN</td>
<td>043_WLENS</td>
<td>067_NLSES</td>
<td>091_SLEWN</td>
<td>115_LSENW</td>
<td></td>
</tr>
<tr>
<td>020_ELNWS</td>
<td>044_WLNES</td>
<td>068_NLWES</td>
<td>092_SLWEN</td>
<td>116_LSWEN</td>
<td></td>
</tr>
<tr>
<td>021_ELNSW</td>
<td>045_WLNSE</td>
<td>069_NLWE</td>
<td>093_SLWNE</td>
<td>117_LSWNE</td>
<td></td>
</tr>
<tr>
<td>022_ELNSW</td>
<td>046_WLSNE</td>
<td>070_NLSE</td>
<td>094_SLNEW</td>
<td>118_LSNEW</td>
<td></td>
</tr>
<tr>
<td>023_ELSNW</td>
<td>047_WLSNE</td>
<td>071_NLSWE</td>
<td>095_SLNWE</td>
<td>119_LSNWE</td>
<td></td>
</tr>
</tbody>
</table>
architecture Chave_Fixed of Chave_Fixed is
constant route: string := "NSWLE";

-- convert character (describing direction) to integer (0-4)
function c2i (c: character) return integer is
variable i: integer;
begin
 case(c) is
 when 'E' => i := 0;
 when 'W' => i := 1;
 when 'N' => i := 2;
 when 'S' => i := 3;
 when 'L' => i := 4;
 when others => i := -1;
 end case;
 return i;
end;

begin
 -- generate connections according to the constant "route"
genenerate_connections: process(rx, data_in, ack_tx)
begin
 for i in 0 to 4 loop
 tx(c2i(route(i+1))) <= not rx(i);
 data_out(c2i(route(i+1))) <= not data_in(i);
 ack_rx(i) <= not ack_tx(c2i(route(i+1)));;
 end loop;
end process;
end Chave_Fixed;
Configuration Controller performed by computer

reconfiguration requests

Data Router (Circuit Switching)

Control Router (Packet Switching)

Reconfigurable Data Router (Circuit Switching)

Compute and Forward

RS-232 cable

JTAG cable

Data in/out

Virtex4 FX12

IP
Reconfigurable Router Floorplanning
Area Results

Reconfigurable Router Configuration:
5 in / 5 out ports, 8 bits per port
14 bus-macros (5 data_in, 5 data_out, 2 control_in, 2 control_out)
28 CLBs used, 32 CLBs reserved
256 LUTs and 256 FFs reserved (2% V4FX12)

1 Left side CLB column of Bus-Macro (EAPR)
2 Right side CLB column of Bus-Macro (EAPR)
3 Router wires and inverters (EAPR)
384 LUTs and 384 FFs reserved (3% V4FX12)
Timing Results

<table>
<thead>
<tr>
<th>Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>≈ 2s</td>
<td>IP source starts sending a packet to request a new route</td>
</tr>
<tr>
<td>2 ck</td>
<td>IP source sends header to control router</td>
</tr>
<tr>
<td>6 ck</td>
<td>Delay to pass through each control router</td>
</tr>
<tr>
<td>6 ck</td>
<td>IP target (serial core) receives the entire request route packet</td>
</tr>
<tr>
<td>≈ 2s</td>
<td>Serial core sends 1 byte requesting a specific partial bitstream by the serial interface; Software running on the PC and connected to the serial interface receives the value, search this value on a table to find the name of the requested partial bitstream and call the Impact tool from Xilinx to trigger the partial reconfiguration; The Impact tool takes 54ms to send the partial bitstream by the JTAG interface running at @6MHz; After reconfiguration a byte is sent back by the serial interface to acknowledge that reconfiguration completed successfully; Finally the byte is received on the Serial core.</td>
</tr>
<tr>
<td>2 ck</td>
<td>Serial core sends a confirmation packet to control router</td>
</tr>
<tr>
<td>6 ck</td>
<td>Delay to pass through each control router</td>
</tr>
<tr>
<td>6 ck</td>
<td>IP source receives the entire confirmation packet</td>
</tr>
<tr>
<td>1 ck</td>
<td>IP source can start sending data through the established data path</td>
</tr>
</tbody>
</table>
- A multi-layer NoC was presented, where a packet switching NoC is used for control and one or more circuit switching NoCs can be used for data communication.

- Partial reconfiguration is used to establish communications in the data network layer.

- Disadvantage is the initial latency for establishing a communication path.

- Advantage 1: area saving. Data routers do not need routing algorithms, arbitration and crossbars to connect input ports to output ports.

- Advantage 2: QoS. As each data layer uses circuit switching, maximum throughput is guaranteed between source and target of communication.
- Currently 120 partial bitstreams are required for each router. If partial bitstream relocation is employed, only the 120 different combinations need to be stored.
- Implement a Configuration Controller on the FPGA, not in the PC.
- Allow self-reconfiguration by using the ICAP (Internal Configuration Access Port).
- Prototype the multi-layer NoC in a bigger FPGA and improve the case study.
Questions?

Leandro Möller
TU Darmstadt
moller@mes.tu-darmstadt.de
Comparing Interconnection Infrastructures

Time required to establish a communication channel

- **Packet Switched NoC (runtime)**
- **Circuit Switched NoC (runtime)**
- **Multi-Layer NoC (runtime)**
- **Point-to-point (design time)**

Area Usage

- **Point-to-point (direct connection)**
- **Multi-Layer NoC**
- **Packet+Circuit Switched NoC**

Reduce long wires problem

- **Point-to-point (no)**
- **Multi-Layer NoC (yes)**
- **Standard NoC (yes)**
Each control router can control the configuration of the data routers in the same XY coordinates.