Customized Exposed Datapath Soft-Core Design Flow with Compiler Support

Otto Esko*, Pekka Jääskeläinen*, Pablo Huerta¤, Carlos Sanches De La Lama¤, Jarmo Takala* and Jose Ignacio Martinez¤

> * Tampere University of Technology, Finland ¤ Universidad Rey Juan Carlos, Madrid, Spain

Motivation

- Popular way of using high level language programming on FPGA designs is to use soft-core processor
 - No manual RTL coding
 - Fast to implement
- However scalability in the current soft-cores is limited
- We propose the performance can be scaled by using a customizable parallel architecture to exploit the available ILP
 - Without any RTL coding

Outline

- Transport Triggered Architecture
- TTA-based Codesign Environment
- Design Flow
- Custom Operation Design Flow
- Benchmark Suite
- Results
- Conclusion

TAMPERE UNIVERSITY OF TECHNOLOGY

4

TTA Function Unit

Operation executed as side effect of operand transports
Operands are written to operand registers (O)
Operation performed when last operand written to trigger register (T)
FUs can be fully pipelined

Example TTA Datapath

TTA-based Codesign Environment (TCE)

- TCE is a toolset for designing application specific processors based on TTA processor template
 - Main use case: Fast co-design of processor based accelerators without manual VHDL coding
 - HLL to RTL-flow
- Processor architecture and implementation are separeted in the design process
- Retargetability

TCE Design Flow

Custom Operations

- TCE allows user defined MIMO custom operations
- Can speed up the application algorithm significantly
- Custom operations can be tested and evaluated without RTL implementation
 - Behavioral simulation model is needed (C/C++)

Custom Operation Design Flow

Example: Simulation C model

Original C code:

```
uint32
reflect(uint32 data, uint8 nBits) {
 uint32 refl = 0;
 uint8 bit = 0;
 for(bit = 0; bit < nBits;++bit){
  if(data & 0x01) {
    refl |= (1 << ((nBits-1)-bit));
  data = (data >> 1);
 return refl;
```

```
Behav. simulation model:
uint32 data = UINT(1);
uint8 nBits = UINT(2);
uint32 refl = 0;
uint8 bit = 0;
for(bit = 0; bit < nBits;++bit){
 if(data & 0x01) {
  refl |= (1 << ((nBits-1)-bit));
 }
 data = (data >> 1);
IO(3) = refl;
```

Example: Custom operation usage

Original C code:

uint32 result = 0; result = reflect(data, 8);

Custom operation call:

uint32 result = 0; _TCE_REFLECT(data, 8, result);

Example: Architecture description

CHStone benchmark suite

- CHStone is a benchmark suite targeted for evaluating High Level Synthesis tools
- Benchmark programs are written in C
- Consists of
 - Arithmetic programs
 - Media applications
 - Cryptography programs
 - Processor emulation
- Seven test programs were used in evaluation

TTA used in evaluation

- One TTA architecture was created through design iterations
 - Various different architectures were tested
 - Processor resources were scaled
 - Interconnection was optimized
- Tradeoffs between
 - Cycle count FPGA resource usage Max clock frequency
- Design work was done at architecture level
 - All resources were taken from standard hardware library
 - Custom operations were not used
 - No RTL coding was needed
- Final processor architecture had
 - 3 ALUs, 1 Multiplier and 1 Load Store Unit
 - 3 register files (14 registers in each)
 - 1 fully connected and 17 partially connected transport buses

Tested architectures

- Hardware multipliers were used on all targets
- FPGAs' internal memory was used on all targets
- TTA
 - Synthesized on Altera Stratix II and Xilinx Virtex 5
- Nios II
 - Fastest Nios II/f configuration was used
 - Synthesized on Altera Startix II
- MicroBlaze
 - Both 3- and 5-stage pipeline version were used
 - Synthesized on Xilinx Virtex 5

Results – Max clock frequency

	Stratix II		Virtex 5			
	TTA	Nios II	TTA	mBlaze 3-stage	mBlaze 5-stage	
f _{max} / MHz	149	175	191	169	195	

Speedup: TTA vs. Nios II/f

Speedup - TTA vs. Nios II

Speedup: TTA vs. MicroBlaze

4,5 4 3,5 3 2,5 TTA vs. 3-stage mBlaze 2 TTA vs. 5-stage mBlaze 1,5 1 0,5 0 adpcm blowfish sha aes gsm jpeg mips

Speedup - TTA vs. MicroBlaze

Results - Area

		Stratix II		Virtex 5		
		TTA	Nios II	TTA	mBlaze 3-stage	mBlaze 5-stage
LUTs	#	5 218	2 322	5 024	1 537	1 899
	% of all	3.6 %	1.6 %	7.3 %	2.2 %	2.7 %
Registers	#	2 785	1 890	3 485	1 318	1 841
	% of all	1.9 %	1.3 %	5.0 %	1.9 %	2.7 %

Results – Instruction memory usage

Conclusion

- TTA template provides high level of customization
 - Processor resources
 - Datapath connectivity
- TCE provides tools for the proposed customizable soft-core design flow
 - Runtime retargetability
 - Released as open source
 - Available at http://tce.cs.tut.fi
- TTA can be used to scale performance
 - when ILP is available
 - at the expense of FPGA resource and memory usage
- Custom operations could be used to increase performance even further
 - Requires manual RTL coding