FPGA-Optimised Uniform Random Number Generators using LUTs and Shift Registers

David B. Thomas and Wayne Luk
Imperial College London
{dt10,w.luk}@imperial.ac.uk
Achievements

• New FPGA-specific Random Number Generator (RNG)
 – Provide: hardware architecture + instantiation algorithm
• Architecture: use bit-wide LUTs and Shift Registers
 – Allow large period and good mixing (statistical quality)
 – Provide high clock rates with low resource utilisation
• Instantiation Algorithm: based on linear recurrences
 – Describe RNG instances using 5 parameters
 – Paper includes code generator and bit-exact simulator
• Complete RTL description of RNG instances
 – Open source VHDL available online
Motivation

- Monte-Carlo simulation works very well on FPGAs
 - Fine-grain parallelism: pipeline within simulator
 - Coarse-grain parallelism: instantiate parallel simulators
- Monte-Carlo is important, and becoming more so
 - Complex models often have no realistic analytical solution
 - Stochastic models can be much easier to describe
- But: Monte-Carlo is very sensitive to RNG quality
 - Obscure statistical biases can wreck simulation results
 - Parallel software guys are acutely aware of this
 - FPGA application designers need to take this into account
- Other applications also require good quality RNGs
Linear Feedback Shift Registers

• The “classic” hardware uniform RNG
 – Like a classic car: poor efficiency; tends to break down
• Known outside hardware as a “GFSR using XOR”
 – Usually prefixed by “For the love of god, don’t use a ...”
 – Largely discredited in the scientific software world
• Basic principles useful in most FPGA RNGs
 – Lets take a look...
LFSR: The Architecture
LFSR: The Architecture

\[
\begin{array}{c}
\text{xor} \\
 s_0 \\
 s_1 \\
 s_2 \\
 s_3 \\
 s_4 \\
 s_5 \\
 r_0
\end{array}
\]
LFSR: The Architecture

![Diagram of LFSR](image-url)
LFSR: The Architecture
LFSR: The Theory

\[s' = A \times s \]

\[
\begin{bmatrix}
 s_0' \\
 s_1' \\
 s_2' \\
 s_3' \\
 s_4' \\
 s_5'
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 1 & 0 & 0 & 1 \\
 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\times
\begin{bmatrix}
 s_0 \\
 s_1 \\
 s_2 \\
 s_3 \\
 s_4 \\
 s_5
\end{bmatrix}
\]
LFSR: The Theory

\[s' = A \times s \]

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
s_0' \\
s_1' \\
s_2' \\
s_3' \\
s_4' \\
s_5' \\
\end{bmatrix}
= \begin{bmatrix}
s_0 \\
s_1 \\
s_2 \\
s_3 \\
s_4 \\
s_5 \\
\end{bmatrix}
\times
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]
LFSR: The Theory

\[s' = A \times s \]

\[
\begin{bmatrix}
 s_0' \\
 s_1' \\
 s_2' \\
 s_3' \\
 s_4' \\
 s_5'
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & 1 & 0 & 0 & 1 \\
 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix} \times \begin{bmatrix}
 s_0 \\
 s_1 \\
 s_2 \\
 s_3 \\
 s_4 \\
 s_5
\end{bmatrix}
\]
LFSR: The Theory

\[s' = A \times s \]

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

\[
s_0' = \begin{bmatrix}
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\]

\[
s_1' = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\]

\[
s_2' = \begin{bmatrix}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\]

\[
s_3' = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
\end{bmatrix}
\]

\[
s_4' = \begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
\end{bmatrix}
\]

\[
s_5' = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
\end{bmatrix}
\]

\[
s_0 \quad s_1 \quad s_2 \quad s_3 \quad s_4 \quad s_5
\]
LFSR: The Theory

\[s' = A \times s \]

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{s}_0 \\
\text{s}_1 \\
\text{s}_2 \\
\text{s}_3 \\
\text{s}_4 \\
\text{s}_5 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{s}_0' \\
\text{s}_1' \\
\text{s}_2' \\
\text{s}_3' \\
\text{s}_4' \\
\text{s}_5' \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{s}_0 \\
\text{s}_1 \\
\text{s}_2 \\
\text{s}_3 \\
\text{s}_4 \\
\text{s}_5 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{x} \\
\end{bmatrix}
\]
LFSR: The Theory

\[s' = A \times s \]

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\times
\begin{bmatrix}
s_0' \\
s_1' \\
s_2' \\
s_3' \\
s_4' \\
s_5'
\end{bmatrix}
\]
General Theory: Linear Recurrences

• The matrix A defines a linear recurrence (mod-2)
 – Let s_0 be the initial state of the LFSR
 – After one cycle: $s_1 = A s_0$
 – After two cycles: $s_2 = A s_1 = A (A s_0) = A^2 s_0$
 – After i cycles: $s_i = A^i s_0$

• Eventually the sequence must repeat (finite state)
 – For an n bit state the maximum possible period is 2^n-1
 – Can determine period by analysing A

• Challenge: given requirements
 – Maximise period
 – Find best statistical quality subject to maximal period
LFSRs: Why are they so bad?

- Quality: have known statistical quality problems
- Period: LFSRs only make sense for $n < 128$
 - A period of $2^{128} - 1$ is worryingly low for parallel simulations
 - Makes randomised seeding of parallels RNGs hazardous
- Efficiency: a 1-bit LFSR requires many resources
 - Needs four or five LUT-FF elements for each bit
- Scalability: the LFSR only provides one bit/cycle
 - Most applications need far more bits per cycle
 - Multiple bits requires independent parallel LFSRs
 - Parallel LFSRs = GFSR+XOR: bad reputation
- Please don’t use LFSRs for parallel Monte-Carlo...
Previous FPGA RNGs: Software RNGs

• Take a software generator, implement in RTL
 – Popular choice: take advantage of existing algorithms
 – Mersenne Twister, SPRNG, lagged Fibonacci

• Software generators often not efficient in hardware
 – Use different operation costs: no bit-level ops or RAMs
 – Ignore data-dependencies; may not pipeline well

• Word-based generators provide 32 or 64-bit words
 – FPGA simulations often need 128+ random bits/cycle
 – Instantiating parallel generators is a poor solution

• Common practice: optimise SW algorithm for HW
 – But: linear recurrences have subtle properties
 – e.g. attempts to increase outputs/cycle -> unknown period
How can we create a new FPGA RNG

1. Define a general architecture for the generator
 • What sort of resources, and how are they connected?
 • What constraints are placed on the connections?

2. Create algorithm for constructing instances of RNG
 • Use random choices to make decisions about structure

3. Search for good instances of the generator
 a. Generate a huge number of candidate RNG instances
 b. Discard all candidates where constraints are not met
 c. Extract matrix A for candidate RNGs
 d. Discard RNGs which do not have maximum period
 e. Select best remaining RNG according to quality metrics
Previous FPGA RNGs: LUT-Optimised
Improve Period: LUT-FIFO
Why do we need another RNG?

• The LUT-Opt generator is very small and fast
 – Good as a building block for non-uniform generators
 – But: has some mild statistical problems
• The LUT-FIFO has superb quality and a huge period
 – Same class as Mersenne Twister, but more efficient
 – But: overkill for most applications, and requires block RAM
• Both generators are hard to distribute to users
 – Require carefully selected parameters
 – Impossible to include the code in papers
 – Full set of generators requires megabytes of VHDL
LUT-SR Generator: Goals

• Architecture - Efficient, Scalable, and Foolproof
 – Efficient: constant resources per generated bit
 – Scalable: quality and period scale with output width
 – Foolproof: no quality issues; appropriate for use anywhere

• Specification - Concise, Complete, and Open Source
 – Concise: generators described using a simple algorithm
 – Complete: all parameters and algorithms included in paper
 – Open Source: VHDL libraries made available online

• No excuses - if you’re still using an LFSR... why?
The LUT-SR Architecture
Architecture: Optimise Temporal Quality

- Outputs only depend on Shift-Register (SR) outputs
 - No direct dependency between previous and next output
 - Minimum dependency distance is depth of shortest SR
- Scale storage with output bits
 - Equidistribution - theoretical measure of auto-correlation
 - LUT-Opt: poor equidistribution due to 1:1 storage:output
 - LUT-FIFO: equidistribution decreases as outputs increase
 - LUT-SR: equidistribution constant as output bits increase
- Use Shift-Registers of different lengths
 - Increases mixing between bits in state
 - Improve “avalanche” property: time till one bit affects all bits
Initialisation: Managing RNG State

• Loading RNG state is important
 – We need to be able to put the RNG in a *specific* state
 – Parallel simulations have to manage RNG states carefully
 • Leapfrogging – single RNG sequence split among RNGs
 • Random initialisation – use random seed state for each RNG

• Loading RNG state is infrequent
 – 99.999% of the time is spent generating random bits
 – Can’t spend lots of resources on initialisation

• Previous approaches tend to side-step initialisation
 – *Umm, including LUT-Opt and LUT-FIFO*
 – Suggested expensive parallel loading of state

• We can get initialisation for free, *if we are careful*
Initialisation: Finding a Cycle

\[s_0 \oplus s_1 \oplus s_2 \oplus s_3 \oplus s_4 \oplus s_5 \]

\[r_0 \quad r_1 \quad r_2 \quad r_3 \quad r_4 \quad r_5 \]
Initialisation: Finding a Cycle

\[s_0 \oplus s_1 \oplus s_2 \oplus s_3 \oplus s_4 \oplus s_5 \]

\[r_0 \quad r_1 \quad r_2 \quad r_3 \quad r_4 \quad r_5 \]
Initialisation: Finding a Cycle

\[
\begin{align*}
& s_0 \oplus s_1 \oplus s_2 \oplus s_3 \oplus s_4 \oplus s_5 \\
& r_0 \quad r_1 \quad r_2 \quad r_3 \quad r_4 \quad r_5
\end{align*}
\]
Initialisation: Finding a Cycle
Initialisation: Finding a Cycle

\[s_0 \oplus s_1 \oplus s_2 \oplus s_3 \oplus s_4 \oplus s_5 \]
Initialisation: Finding a Cycle
Initialisation: Finding a Cycle
Initialisation: Opening Up the Cycle

\[s_0 \oplus s_1 \oplus s_2 \oplus s_3 \oplus s_4 \oplus s_5 \]

\[r_0 \ r_1 \ r_2 \ r_3 \ r_4 \ r_5 \]
How do we find the cycle?

- Previous work casually suggested “just find a cycle”
 - *cough*, my paper on LUT-Opt generators
- Given an arbitrary generator, finding a cycle is slow
 - Well known graph problem: Hamiltonian cycle
 - Doesn’t really work for large numbers of output bits
- Have to build the cycle into basic structure of RNG
 - Start with a cycle, then add extra taps on top
Specification of LUT-SR RNGs

- Four parameters describe type of RNG
 - n: Number of bits in the state
 - r: Number of output bits per cycle
 - t: Number of xor inputs per bit (e.g. for 6-LUT choose $t=5$)
 - k: Maximum shift register length (e.g. $k=32$ for SRL32)
- Each (n,r,t,k) describes a huge space
 - Many possible $n \times n$ A matrices matching our template
- We want to pick specific generators which:
 1. Match a specific parameterisation (n,r,t,k)
 2. Have the maximum possible period of 2^n-1
 3. Have excellent statistical properties
Specification of LUT-SR RNGs

- Describe LUT-SR RNGS using \((n,r,t,k,s)\)
 - \((n,r,t,k)\) describes the **class** of LUT-SR RNG
 - Free parameter \(s\) identifies an **instance** of the RNG class
- Provides a way to compactly describe RNGs
 - For example: \((n=1024,r=32,t=5,k=32,s=7240)\)
 - Describes a LUT-SR generator with:
 - A period of \(2^{1024} - 1\), producing 32 random output bits per cycle
 - Designed for 5-input XOR gates and 32-bit shift registers
- Where does \(s\) come from?
 - Identifies the best instances, details in paper
Expand 5 parameters into RTL

1. Seed simple (software) RNG with free parameter s

2. Randomly extend FIFOs
 - While state bits of RNG is less than n
 - Choose a random output bit i in $[0,t)$
 - If $\text{fifo}_\text{length}(i) < k$ then extend $\text{fifo}(i)$

3. Create the shift permutation $i\rightarrow i+1 \mod r$
 - This will form our loading cycle

4. Insert XOR connections
 - For i in $[1,t)$
 1. Create a random permutation of $[0,r) \rightarrow [0,r)$
 2. Add permutation as XOR connections

5. Permute the output bits
1. Initialise RNG using s
2. Create shift cycle
1. Initialise RNG using s
2. Create shift cycle
3. Randomly extend FIFOs
1. Initialise RNG using s
2. Create shift cycle
3. Randomly extend FIFOs
4. Build XOR connections
1. Initialise RNG using s
2. Create shift cycle
3. Randomly extend FIFOs
4. Build XOR connections
 - Random permutations
1. Initialise RNG using s
2. Create shift cycle
3. Randomly extend FIFOs
4. Build XOR connections
 - Random permutations
 - Keep existing edges
1. Initialise RNG using s
2. Create shift cycle
3. Randomly extend FIFOs
4. Build XOR connections
 - Random permutations
 - Keep existing edges
1. Initialise RNG using s
2. Create shift cycle
3. Randomly extend FIFOs
4. Build XOR connections
 - Random permutations
 - Keep existing edges
5. Permute output bits
Why write the algorithm this way?

• Not the most efficient algorithm for finding RNGs
 – Could modify chances of each s giving a valid RNG
 – Algorithm is quite slow when building up FIFOs

• But very efficient algorithm for instantiating RNGs
 – Code is very small and easy to understand
 – Self-contained and can be copied and pasted

• Algorithm design and spec. is biased towards users
 – There are many potential users (instantiators) of RNGs
 – There is only one person, me, doing the searching
Complete specification in the paper

- Provide everything in one column of C++
 1. Expansion algorithm: convert 5-tuple into RNG
 2. Pseudo-RTL source-code printer
 - Dump the RNG in a form that can be turned into VHDL or C
 - Sigh, or Verilog if you hate type-safety *that* much...
 3. Bit-accurate software simulator
- Paper includes tuples for a variety of r and t
 - Hopefully covers useful spectrum for most people
- Plus: online open-source repository
 - Generator for VHDL RNGs and test-benches
 - http://www.doc.ic.ac.uk/~dt10/research/rngs-fpga-lut_sr.html
 - Or try googling “LUT-SR RNG”, or look in paper for the URL
Comparison with other RNGs

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>r</th>
<th>Quality</th>
<th>RAM</th>
<th>LUT</th>
<th>FF</th>
<th>r/LUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tauss113</td>
<td>113</td>
<td>32</td>
<td>Medium</td>
<td>0</td>
<td>87</td>
<td>208</td>
<td>0.37</td>
</tr>
<tr>
<td>MT19937</td>
<td>19937</td>
<td>32</td>
<td>Good</td>
<td>2</td>
<td>278</td>
<td>?</td>
<td>0.12</td>
</tr>
<tr>
<td>LFSR-160</td>
<td>160</td>
<td>32</td>
<td>Poor</td>
<td>0</td>
<td>448</td>
<td>384</td>
<td>0.07</td>
</tr>
<tr>
<td>LUT-OPT</td>
<td>512</td>
<td>512</td>
<td>Medium</td>
<td>0</td>
<td>513</td>
<td>512</td>
<td>1.00</td>
</tr>
<tr>
<td>LUT-FIFO</td>
<td>11213</td>
<td>89</td>
<td>Good</td>
<td>1</td>
<td>115</td>
<td>181</td>
<td>0.77</td>
</tr>
<tr>
<td>LUT-SR</td>
<td>1024</td>
<td>32</td>
<td>Good</td>
<td>0</td>
<td>64</td>
<td>64</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Conclusion

• New approach for producing optimised RNG
 – Linear recurrence theory: ensure statistical quality
 – Compact RNG description using 5 parameters

• The LUT-SR generator is optimised for FPGAs
 – Bit-wise LUTs to improve mixing within state
 – Bit-wise SRs to increase period using cheap storage

• Provides a good balance between quality and area
 – High performance, only two LUTs per random bit
 – Provides long periods and great statistical quality

• Easy to use: VHDL available, or use the paper spec.
 – Friends don’t let friends use LFSRs...