Real-Time Classification of Multimedia Traffic using FPGA

Weirong Jiang1 and Maya Gokhale2
1University of Southern California
2Lawrence Livermore National Laboratory
August 31, 2010

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Background

- Internet Traffic Classification
 - Identify the application type of a packet / flow
 - e.g. WWW, Email, FTP, Instant Messaging, Skype, IPTV, ...
 - Traffic Engineering, QoS, Security, …

- Multimedia Applications
 - Difficult to identify
 - Random port (P2P), encrypted payload (Skype), etc.
Existing Methods

- **Port-based**
 - Traditional method, e.g. WWW: 80
 - **Fail** for applications using random port numbers

- **Deep Packet Inspection**
 - Pattern matching in packet payload
 - **Fail** for encrypted payload

- **Host Behavior**
 - Connection patterns between hosts
 - Topology / Traffic –dependent
 - May not capture packets from both sides of connection

- **Machine Learning**
 - active research in ML approaches to traffic classification
 - few ML hardware acceleration approaches
 - C4.5 decision trees: 8Mpackets/s on NetFPGA
Statistical Traffic Classification

- Existing efforts
 - Feature selection: packet fields, flow duration
 - Machine learning algorithms
 - Focus on accuracy and robustness

- Challenge
 - Computation complexity in both training and testing
 - State size (memory requirements)
 - Achieve real-time classification

- Our goal
 - High accuracy: fraction of packets correctly classified
 - Low memory requirements
 - High classification throughput
 - Packets per second
 - Dynamic update
 - Online training
 - Intermix training and data packets
Data sets

- Data sets contain IP traffic for three categories of multimedia application
 - VoIP, IM, IPTV from http://tstat.tlc.polito.it/traces.shtm

<table>
<thead>
<tr>
<th>Application</th>
<th>Traces</th>
<th>Start date & time</th>
<th>Duration</th>
<th>IP protocol</th>
<th># packets</th>
<th>Data size (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skype</td>
<td>Skype1</td>
<td>2006-05-29 02:18:41</td>
<td>95 hour 26 min</td>
<td>TCP</td>
<td>2357997</td>
<td>338.5</td>
</tr>
<tr>
<td></td>
<td>Skype2</td>
<td>2006-05-29 02:01:25</td>
<td>95 hour 45 min</td>
<td>UDP</td>
<td>39627543</td>
<td>8396.8</td>
</tr>
<tr>
<td></td>
<td>Skype3</td>
<td>2006-05-29 02:49:20</td>
<td>79 hour 3 min</td>
<td>UDP</td>
<td>3049284</td>
<td>231.3</td>
</tr>
<tr>
<td>Instant Mess.</td>
<td>MSN</td>
<td>2006-05-29 02:01:25</td>
<td>95 hour 45 min</td>
<td>TCP</td>
<td>15434573</td>
<td>2234.3</td>
</tr>
<tr>
<td>(IM)</td>
<td>YMSG</td>
<td>2006-05-29 02:01:26</td>
<td>95 hour 45 min</td>
<td>TCP & UDP</td>
<td>841221</td>
<td>79.1</td>
</tr>
<tr>
<td></td>
<td>XMPP</td>
<td>2006-05-29 02:01:25</td>
<td>95 hour 45 min</td>
<td>TCP</td>
<td>214636</td>
<td>34.8</td>
</tr>
<tr>
<td>IPTV</td>
<td>IPTV</td>
<td>2008-05-06 06:19:42</td>
<td>5 min 32 sec</td>
<td>UDP</td>
<td>13513514</td>
<td>18633.8</td>
</tr>
<tr>
<td>Legacy</td>
<td>WIDE-2000</td>
<td>2000-01-01 13:59:00</td>
<td>1 hour 35 min</td>
<td>TCP & UDP</td>
<td>2095192</td>
<td>1052.5</td>
</tr>
</tbody>
</table>

- We use packet level features only
- IP protocol, packet size, TCP/UDP ports, TCP flags
Machine Learning Algorithm

- **k Nearest Neighbors (k-NN)**
 - Supervised learning
 - Assigns to a test instance the majority class type of its k nearest neighbors.

- Keep sorted list of k nearest neighbors
- Distance measure can be
 - Euclidean
 - Manhattan
 - Hamming
k-NN characteristics

- Desirable Properties
 - Proved high accuracy in traffic classification
 - Simple implementation
 - Low training cost
 - No training needed for the basic k-NN!
 - Fast update

- Challenges
 - High computation complexity (Low throughput)
 - Given N training samples,
 - It takes $O(N)$ time to classify each test instance
 - e.g. $\sim 1.6 \text{ sec}$ for classifying a test instance against 100K training samples in our experiments
 - Potentially high memory requirements
K-nn algorithm

- R = training set, r in R, q is a test instance

1. Initialize a k-entry list L = {} to hold the k training samples with smallest distance to q
2. For each r in R
 1. Compute d(q,r) distance between q and r
 2. Insert r into L in sorted order; truncate L to length k
3. Assign q the label of the majority among the k training samples in L
Locality-Sensitive Hashing (LSH)

- Proposed in 1998
 - Approximate k-NN in high dimensional spaces

- Basic idea
 - Hash the data points using multiple hash functions;
 - for each function $h(.)$: if $d(p, q) < d(p', q')$,
 \[\Pr(h(p) = h(q)) > \Pr(h(p') = h(q')) \]

- Reduced computation complexity
 - # of hash tables = H
 - $O(N) \Rightarrow O(H)$ time for classifying each test instance
LSH Function

- Distance function: Hamming distance

Example
- \(p = 0101, q = 1101 \)
- \(p' = 0001, q' = 1111 \)
- Distance
 - \(d(p, q) = 1 \)
 - \(d(p', q') = 3 \)

- Hash function \(h \): random single bit selection
 - \(\Pr(h(p) = h(q)) = 1 - \frac{d(p, q)}{4} = \frac{3}{4} \)
 - \(\Pr(h(p') = h(q')) = 1 - \frac{d(p', q')}{4} = \frac{1}{4} \)

- So with hamming distance and random bit selection,
 - \(\Pr(h(p) = h(q)) > \Pr(h(p') = h(q')) \)
K-nn with LSH algorithm

Training
1. Choose H LSH functions g_i, $i = 1, \ldots, H$
2. Construct H hash tables h_i
3. For each r in R
 1. For $i = 1$ to H
 1. $h_i[g_i(r)] = r$

Testing
1. Initialize a k-entry list $L = \{}$ to hold the k training samples with smallest distance to q
2. For $i = 1$ to H
 1. $r = h_i[g_i(q)]$
 2. compute $d(r, q)$
 3. Insert r into L in sorted order; truncate L to length k
3. Assign q the label of the majority among the k training samples in L
Performance Evaluation

- Data Set
 - Skype
 - Instant messaging (IM): MSN, Yahoo, Gtalk, ...
 - IPTV
 - Legacy applications: WWW, Email, DNS, ...

- Features
 - IP protocol (8 bits)
 - packet size (16 bits)
 - TCP/UDP ports (16 bits)
 - TCP flags (8 bits)

- Performance metrics
 - Accuracy
 - # of correctly classified packets / # of all packets
 - Throughput
 - # of packets per second (PPS)
Software Implementation

<table>
<thead>
<tr>
<th># of Training samples</th>
<th>Classification accuracy</th>
<th>Classification time per test instance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k-NN</td>
<td>LSH</td>
</tr>
<tr>
<td>100</td>
<td>85.48%</td>
<td>81.24%</td>
</tr>
<tr>
<td></td>
<td>2.11 msec</td>
<td>0.023625 msec</td>
</tr>
<tr>
<td>1K</td>
<td>87.23%</td>
<td>87.24%</td>
</tr>
<tr>
<td></td>
<td>15.15 msec</td>
<td>0.024625 msec</td>
</tr>
<tr>
<td>10K</td>
<td>99.90%</td>
<td>99.79%</td>
</tr>
<tr>
<td></td>
<td>164.04 msec</td>
<td>0.025500 msec</td>
</tr>
<tr>
<td>100K</td>
<td>100%</td>
<td>99.97%</td>
</tr>
<tr>
<td></td>
<td>1568.11 msec</td>
<td>0.025750 msec</td>
</tr>
</tbody>
</table>

- Corresponding maximum throughput: 40 KPPS
Hardware Accelerator

- Parallel & pipelined architecture
- Pipelined bitonic sorting network

- Parameterized architecture
 - k, # hash tables H, hash table size M
Number of hash tables

- More hash tables gives better accuracy and correspondingly larger resource utilization

Impact of the number of hash tables

<table>
<thead>
<tr>
<th># of Hash tables</th>
<th>Overall accuracy</th>
<th>Slice usage</th>
<th>BRAM usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>73.58%</td>
<td>1%</td>
<td>3%</td>
</tr>
<tr>
<td>4</td>
<td>97.56%</td>
<td>5%</td>
<td>9%</td>
</tr>
<tr>
<td>8</td>
<td>99.56%</td>
<td>13%</td>
<td>20%</td>
</tr>
<tr>
<td>12</td>
<td>99.83%</td>
<td>22%</td>
<td>30%</td>
</tr>
<tr>
<td>16</td>
<td>99.97%</td>
<td>27%</td>
<td>40%</td>
</tr>
</tbody>
</table>
Hash table size

- Larger hash table increases accuracy
- No impact on BRAM usage until 2K due to fixed BRAM size allocations

Impact of Hash Table Size

<table>
<thead>
<tr>
<th>Hash table size</th>
<th>Overall accuracy</th>
<th>Slice usage</th>
<th>BRAM usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>99.34%</td>
<td>28%</td>
<td>40%</td>
</tr>
<tr>
<td>512</td>
<td>99.83%</td>
<td>29%</td>
<td>40%</td>
</tr>
<tr>
<td>1K</td>
<td>99.97%</td>
<td>27%</td>
<td>40%</td>
</tr>
<tr>
<td>2K</td>
<td>99.98%</td>
<td>29%</td>
<td>80%</td>
</tr>
</tbody>
</table>
FPGA Implementation

- Parameters used: $k=2$, $H=16$, $M=1K$
- Xilinx Virtex 5 xc5vlx50t with -1 speed grade on a Xilinx ML555 development board

<table>
<thead>
<tr>
<th></th>
<th>Available</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Slices</td>
<td>7200</td>
<td>27%</td>
</tr>
<tr>
<td># of IOs</td>
<td>480</td>
<td>25%</td>
</tr>
<tr>
<td># of BRAMs</td>
<td>60</td>
<td>43%</td>
</tr>
<tr>
<td>Total memory</td>
<td>2160 Kb</td>
<td>40%</td>
</tr>
<tr>
<td>Clock rate</td>
<td></td>
<td>125 MHz</td>
</tr>
</tbody>
</table>

- Throughput (w/ dual-port RAM):
 - Classification: 250 MPPS
 - **80 Gbps** for minimum size (40 bytes) packets
 - Training (Update): 125 MPPS = 40Gbps
Performance Summary

- Comparison

<table>
<thead>
<tr>
<th></th>
<th>k-NN (SW)</th>
<th>LSH (SW)</th>
<th>LSH (FPGA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>100 %</td>
<td>99.97%</td>
<td>99.97%</td>
</tr>
<tr>
<td>Throughput</td>
<td>0.6 PPS</td>
<td>40K PPS</td>
<td>250M PPS</td>
</tr>
<tr>
<td>Speedup</td>
<td>1</td>
<td>6.7×10⁴</td>
<td>4.2×10⁸</td>
</tr>
</tbody>
</table>

- PPS: # of packets per second
- Latency improvement
 - 6×10⁴
 - 1.5×10⁷
Concluding Remarks

- Statistical traffic classification is promising for classifying multimedia traffic
 - Attracted a lot of research interests recently
- Real-time performance demanded (*Yet little work has been done!*)
 - Algorithm-level optimization
 - Hardware accelerators
- Our contributions
 - Propose using LSH for high-speed traffic classification
 - First 10+ Gbps FPGA design for traffic classification
 - Achieving high accuracy and high throughput
- Open Problems
 - Other machine learning algorithms
 - Other packet/flow/network-level features
 - Other hardware accelerators (multi-core, many-core, ...)

USC Viterbi School of Engineering
Q & A

- Thanks