Optimization of Regular Expression Pattern Matching Circuit Using At-Most Two-Hot Encoding on FPGA

SangKyun Yun* and KyuHee Lee

Dept. of Computer & Telecomm. Eng.
Yonsei University, Wonju, Korea
In this paper

- propose a new state encoding scheme, called **At-Most Two-Hot (AMTH)** encoding

- FPGAs such as Virtex-5 and 6 offer **six-input LUTs (6-LUTs)**. AMTH encoding increases the utilization of inputs of 6-LUT.

- optimize regular expression pattern matching circuit using AMTH encoding on **FPGA with 6-LUTs**
Introduction

- **Regular Expression**
 - widely used to represent attack patterns in network intrusion detection systems (NIDS)

- **Hardware based regular expression matching**
 - FPGA based implementation – NFA
 - Memory based implementation – DFA
Basic Implementation of NFA-based matching

- Example Patterns: \(abcd, \ r, \ s(ef)+g \)

- NFA (Pattern Tree)

```
  0 1 2 3 4
  a b c d
  r s
  6 5
  +
  g
  7 8
  e f
```

sub-pattern
Basic Building Blocks

(a) \(c \)

(b) \(R_1 \cdot R_2 \)

(c) \(R_1 / R_2 \)

(d) \(R^* \)

(e) \(R^+ \)

(f) \(R? \)

\(m_c \) : output of shared character decoder for input character \(c \) (1 when an input character is \(c \))

\(R, R_1, R_2 \) : regular expressions
One-hot Encoded Implementation

10 flip-flops
Optimization Methods

- common prefix sharing [Hutchings'02]
- shared character decoder [Clark'03]
- common infix sharing [Lin'07]
- building blocks for constraint repetitions [Bispo'06]

⇒ Their implementations adopted one-hot encoding scheme for state assignment
Motivation

- Increasing the number of inputs
 - conventional FPGAs provide 4-LUTs
 - recently announced FPGAs such as Vertex-5 and Vertex-6 provides 6-LUTs

4-LUTs are sufficient for one-hot encoded implementation of regular expression matching circuits ➔ additional inputs of 6-LUTs may be wasteful
State encoding schemes

- **One-hot encoding**
 - N states \rightarrow use N flip-flops
 - suited to register-rich FPGA architecture
 - however, additional inputs of 6-LUT may be wasteful.

- **Binary encoding**
 - N states \rightarrow use $\log_2 N$ flip-flops
 - requires multi-level LUT logic
 \rightarrow inefficient in FPGA implementation

- **Need a new state encoding scheme**
 - to increase utilization of inputs of 6-LUTs
 - without the degradation of performance
At-Most Two-Hot (AMTH) Encoding

- Basic Idea of AMTH encoding
 - two flip-flops are associated with three states.
 - one or two flip-flops can have value 1 for each state
 - 01, 10, 11 → three states
 - 00 → all of three states are inactive

- In the state machine of three states, if the combinational logic can be implemented in two 6-LUTs, the three states can be implemented using two logic elements (LE)
Four types of AMTH encoding groups

- Each encoding group has only one previous state.

(a) type 1

(b) type 4

(c) type 2

(d) type 3

Invalid group
State Transition Equation of each type

<table>
<thead>
<tr>
<th>type</th>
<th>Equations</th>
<th># inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(S_1 <= (p_1 p_0 = xy) \cdot m_b + (p_1 p_0 = xy) \cdot m_c) \n(S_0 <= (p_1 p_0 = xy) \cdot m_a + (p_1 p_0 = xy) \cdot m_c)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(S_1 <= (p_1 p_0 = xy) \cdot m_b + (p_1 p_0 = xy) \cdot m_c) \n(S_0 <= (p_1 p_0 = xy) \cdot m_a + (p_1 p_0 = xy) \cdot m_c)</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>(S_1 <= (s_1 s_0 = xy) \cdot m_b + (p_1 p_0 = xy) \cdot m_c) \n(S_0 <= (p_1 p_0 = xy) \cdot m_a + (p_1 p_0 = xy) \cdot m_c)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>(S_1 <= (s_1 s_0 = xy) \cdot m_b + (s_1 s_0 = xy) \cdot m_c) \n(S_0 <= (p_1 p_0 = xy) \cdot m_a + (s_1 s_0 = xy) \cdot m_c)</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>(S_1 <= (s_1 s_0 = xy) \cdot m_b + (s_1 s_0 = xy) \cdot m_c) \n(S_0 <= (p_1 p_0 = xy) \cdot m_a + (s_1 s_0 = xy) \cdot m_c)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>(S_1 <= (s_1 s_0 = xy) \cdot m_b + (s_1 s_0 = xy) \cdot m_c) \n(S_0 <= (p_1 p_0 = xy) \cdot m_a + (s_1 s_0 = xy) \cdot m_c)</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>(S_1 <= (s_1 s_0 = xy) \cdot m_b + (s_1 s_0 = xy) \cdot m_c) \n(S_0 <= (p_1 p_0 = xy) \cdot m_a + (s_1 s_0 = xy) \cdot m_c)</td>
<td>6</td>
</tr>
</tbody>
</table>

implemented in two 6-LUTs
AMTH implementation using 6-LUTs

(a) implementation

(b) block diagram
AMTH encoded Implementation of p.6 circuit

10 states \rightarrow 8 flip-flops
AMTH encoding procedure of pattern tree

- **AMTH encoding procedure**
 1. A root state of a pattern tree is implemented using one-hot encoding
 2. Let root be a current node
 3. At first, find type 1 groups at current node and then encode them in AMTH
 4. Find the type 2, type 3, and type 4 groups and then encode them in AMTH
 5. The remaining one or two states are encoding using one-hot encoding
 6. For each of newly encoded states, let the state be a current node and repeat from step 3 to step 5

- **meta-characters split a pattern into sub-patterns**
 - join them after sub-patterns are encoded
Example: AMTH Encoding Procedure

- patterns: \textit{abcd, pqr, pefc*mn, pefc*ms, x, yz}
17 states $\Rightarrow 5 + 4 \times 2 = 13$ flip-flops
Overlapped Matching

- overlapped matching in NFA for regular exp. matching
 - several states (except initial state) can be simultaneously active since initial state is always active during pattern matching.

- examples

```
0   a   1   b   2   a   3
-   1   0   0   0   0
a   1   1   0   0   0
b   1   0   1   1   0
a   1   1   0   1
```

input sequence: aba ...

```
0   a   1   c   2   3
-   1   0   0   0   0
a   1   1   0   0
b   1   0   1   0
a   1   1   0
```

input sequence: ac ...

Handling Overlapped Matching

- In AMTH encoding, overlapped matching states should not belong to the same group.
- Overlapped matching is possible in type 2, 3, 4 group

Modification of AMTH encoding procedure
- Find non-overlapped matching groups
- If only overlapped matching groups remain, one hot encoding is used for overlapped matching groups
Evaluation

- Snort rule v2.8 (Sep. 2008)
 - 1,845 pure regular expression patterns (PCRE)
 - 3,267 static patterns (content)
- The regular expression matching circuits described in Verilog are generated by automatic circuit generation program
- synthesized on Xilinx Virtex-5 FPGA with 500MHz max clock freq. using ISE 11.1
Result of FPGA Synthesis

pure regular expression patterns

<table>
<thead>
<tr>
<th>encoding</th>
<th># rules</th>
<th># states</th>
<th># FFs</th>
<th># CLBs</th>
<th>f_{max}(MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-Hot</td>
<td>1,845</td>
<td>52,551</td>
<td>52,551</td>
<td>7,290</td>
<td>402.36</td>
</tr>
<tr>
<td>AMTH</td>
<td>40,460</td>
<td>5,884</td>
<td>402.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 77% (23% ↓)
- 81% (19% ↓)

static patterns

<table>
<thead>
<tr>
<th>encoding</th>
<th># rules</th>
<th># states</th>
<th># FFs</th>
<th># CLBs</th>
<th>f_{max}(MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-Hot</td>
<td>3,267</td>
<td>28,003</td>
<td>28,003</td>
<td>4,073</td>
<td>993.20*</td>
</tr>
<tr>
<td>AMTH</td>
<td>19,599</td>
<td>3,199</td>
<td>792.06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 70% (30% ↓)
- 78.5% (21.5% ↓)

*actual f_{max} = 500.0 MHz
Conclusion

- propose At-Most Two-Hot (AMTH) state encoding scheme to increase the utilization of 6-LUTs
- AMTH encoding can be used in the optimization of regular expression pattern matching circuit on FPGA with 6-LUTs
- AMTH encoding can ideally reduce the required logic elements up to 33% (when no one-hot encoding)
- In the implementation of regular expression pattern matching circuit, AMTH encoding provides 23-30% LE savings, 19-21% CLB savings, comparing to one-hot encoding
Further Study

- AMTH encoding scheme can be applied to the implementation of general FSM.
 - each group may have more than one previous states. ➞ may not be implemented in one-level 6-LUT logic.

- AMTH encoding can be also used in multi-byte based regular expression pattern matching

- Generalization of AMTH
 ➞ At most k-hot encoding can be also considered
Multi-byte processing using AMTH encoding

- pattern: \textit{abcdefg}hi

4-byte processing at a time
Generalized At-Most k-Hot encoding

- k flip-flops represent up to \(2^{k-1}\) states
 - all zeroes means that all of \(2^{k-1}\) states are inactive.
- state transition equations require at most \(2k + 2^{k-1}\) inputs (\(k \geq 2\))
 - k bit parent state
 - k bit current state
 - at most \(2^{k-1}\) inputs
- the number of inputs

 k=2: 4+2 = 6 \(\rightarrow\) one level 6-LUT
 k=3: 6+4 = 10 \(\rightarrow\) two level 6-LUT
 k=4: 8+8 = 16 \(\rightarrow\) three level 6-LUT