To exploit fault injection on non-injective Sboxes

Guillaume BETHOUART
Nicolas DEBANDE
Agenda

1. Introduction
 - Overview of fault attacks
 - Principle of our attack

2. Application to the Data Encryption Standard
 - Data Encryption Standard
 - Attack Simulation
 - Countermeasures

3. Conclusion
Outline

1. Introduction
 - Overview of fault attacks
 - Principle of our attack

2. Application to the Data Encryption Standard
 - Data Encryption Standard
 - Attack Simulation
 - Countermeasures

3. Conclusion

FDTC 15' To exploit fault injection on non-injective Sboxes September 13, 2015
Overview of fault attacks

- Safe Error Attacks
 + Just need to know if the calculus has been disturbed or not

- Differential Fault Attacks
 + Work with masked implementations

- Collision Fault Attacks
 + Do not need to encrypt the same plaintext

Take the best of each
Overview of fault attacks

- **Safe Error Attacks**
 - Just need to know if the calculus has been disturbed or not

- **Differential Fault Attacks**
 - Work with masked implementations

- **Collision Fault Attacks**
 - Do not need to encrypt the same plaintext

Take the best of each

FDTC 15'

To exploit fault injection on non-injective Sboxes

September 13, 2015
1. Introduction
 - Overview of fault attacks
 - Principle of our attack

2. Application to the Data Encryption Standard
 - Data Encryption Standard
 - Attack Simulation
 - Countermeasures

3. Conclusion
A non-injective Sbox from \mathbb{F}_2^3 to \mathbb{F}_2^2:

- Non injectivity:
 - There exist two different inputs a_1, a_2 such as $S(a_1) = S(a_2)$
 - There are an input a and a differential δ such as $S(a \oplus \delta) = S(a)$

N-Differential:
For a given δ, if there exists a such as $S(a \oplus \delta) = S(a)$, δ is called a N-differential.
A non-injective Sbox from \mathbb{F}_2^3 to \mathbb{F}_2^2:

- Non injectivity
 - there exist two different inputs a_1, a_2 such as $S(a_1) = S(a_2)$
 - there are an input a and a differential δ such as $S(a \oplus \delta) = S(a)$

N-Differential
For a given δ, if there exists a such as $S(a \oplus \delta) = S(a)$, δ is called a N-differential.
A non-injective Sbox from \mathbb{F}_2^3 to \mathbb{F}_2^2:

- there exist two different inputs a_1, a_2 such as $S(a_1) = S(a_2)$
- there are an input a and a differential δ such as $S(a \oplus \delta) = S(a)$

Non injectivity

N-Differential

For a given δ, if there exists a such as $S(a \oplus \delta) = S(a)$, δ is called a N-differential.
A non-injective Sbox from \mathbb{F}_2^3 to \mathbb{F}_2^2:

- Non injectivity
 - there exist two different inputs a_1, a_2 such as $S(a_1) = S(a_2)$
 - there are an input a and a differential δ such as $S(a \oplus \delta) = S(a)$

N-Differential

For a given δ, if there exists a such as $S(a \oplus \delta) = S(a)$, δ is called a **N-differential**.
Introduction

Principle of our attack

Truth table

<table>
<thead>
<tr>
<th>a</th>
<th>S(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

Example

If the calculus is not disturbed by the fault δ, we know:

$$S(a \oplus \delta) = S(a)$$

For a known fault $\delta = 4$

- $S(0 \oplus \delta) = S(4) \neq S(0)$
- $S(1 \oplus \delta) = S(5) \neq S(1)$
- $S(2 \oplus \delta) = S(6) = S(2)$
- $S(3 \oplus \delta) = S(7) \neq S(3)$
Introduction

Principle of our attack

Truth table

<table>
<thead>
<tr>
<th>a</th>
<th>S(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

Example

If the calculus is not disturbed by the fault δ, we know:

$$S(a \oplus \delta) = S(a)$$

For a **known** fault $\delta = 4$

- $S(0 \oplus \delta) = S(4) \neq S(0)$
- $S(1 \oplus \delta) = S(5) \neq S(1)$
- $S(2 \oplus \delta) = S(6) = S(2)$
- $S(3 \oplus \delta) = S(7) \neq S(3)$
Principle of our attack

Truth table

<table>
<thead>
<tr>
<th>a</th>
<th>S(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

Example

If the calculus is not disturbed by the fault δ, we know:

$$S(a \oplus \delta) = S(a)$$

For a known fault $\delta = 4$

$$S(0 \oplus \delta) = S(4) \neq S(0)$$
$$S(1 \oplus \delta) = S(5) \neq S(1)$$
$$S(2 \oplus \delta) = S(6) = S(2)$$
$$S(3 \oplus \delta) = S(7) \neq S(3)$$
Principle of our attack

Truth table

<table>
<thead>
<tr>
<th>a</th>
<th>S(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

Example

If the calculus is not disturbed by the fault δ, we know:

$$S(a \oplus \delta) = S(a)$$

For a **known** fault $\delta = 4$

$$S(0 \oplus \delta) = S(4) \neq S(0)$$

$$S(1 \oplus \delta) = S(5) \neq S(1)$$

$$S(2 \oplus \delta) = S(6) = S(2)$$

$$S(3 \oplus \delta) = S(7) \neq S(3)$$
Introduction

Principle of our attack

Truth table

<table>
<thead>
<tr>
<th>a</th>
<th>S(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

Example

If the calculus is not disturbed by the fault δ, we know:

$$S(a \oplus \delta) = S(a)$$

For a known fault $\delta = 4$

- $S(0 \oplus \delta) = S(4) \neq S(0)$
- $S(1 \oplus \delta) = S(5) \neq S(1)$
- $S(2 \oplus \delta) = S(6) = S(2)$
- $S(3 \oplus \delta) = S(7) \neq S(3)$
** Principle of our attack **

Truth table

<table>
<thead>
<tr>
<th>a</th>
<th>S(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

Example

If the calculus is not disturbed by the fault δ, we know:

$$S(a \oplus \delta) = S(a)$$

For a **known** fault $\delta = 4$

- $S(0 \oplus \delta) = S(4) \neq S(0)$
- $S(1 \oplus \delta) = S(5) \neq S(1)$
- $S(2 \oplus \delta) = S(6) = S(2)$
- $S(3 \oplus \delta) = S(7) \neq S(3)$
Principle of our attack

Result

For a known fault $\delta = 4$
If

$$S(a \oplus \delta) = S(a)$$

We deduce:

$$a = 2 \text{ or } a = 6$$

To deduce information about the input we only need to know:

- The fault value δ
- If the calculus is disturbed or not
1 Introduction
 - Overview of fault attacks
 - Principle of our attack

2 Application to the Data Encryption Standard
 - Data Encryption Standard
 - Attack Simulation
 - Countermeasures

3 Conclusion
DES follows a Feistel scheme:

- 64-bit block cipher using a 56-bit key k
- 16 times the same round transformation f
DES follows a Feistel scheme:

- 64-bit block cipher using a 56-bit key k
- 16 times the same round transformation f
DES follows a Feistel scheme:

- 64-bit block cipher using a 56-bit key k
- 16 times the same round transformation f
Round function f

- Expansion function
- 48-bit round key k_r
- 8 different non-injective Sboxes
- Permutation

To exploit fault injection on non-injective Sboxes
Round function f

- **Expansion function**
 - 48-bit round key k_r
 - 8 different non-injective Sboxes
 - Permutation

To exploit fault injection on non-injective Sboxes
Application to the Data Encryption Standard

Data Encryption Standard

- Round function \(f \)
- Expansion function
- 48-bit round key \(k_r \)
- 8 different non-injective Sboxes
- Permutation

FDTC 15'

To exploit fault injection on non-injective Sboxes

September 13, 2015
Round function f

- Expansion function
- 48-bit round key k_r
- 8 different non-injective Sboxes
- Permutation
• Round function f

- Expansion function
- 48-bit round key k_r
- 8 different non-injective Sboxes
- Permutation

To exploit fault injection on non-injective Sboxes September 13, 2015
Application to the Data Encryption Standard

Attack timing

- First or last round
- After the data propagation
- Before Sboxes
- Fault affects only one Sbox
Application to the Data Encryption Standard

Attack timing

- First or last round
- After the data propagation
- Before Sboxes
- Fault affects only one Sbox

FDTC 15'

To exploit fault injection on non-injective Sboxes

September 13, 2015
If the fault value is known

If we know $S(a \oplus \delta) = S(a)$ we deduce information on a

During the DES: $a = x \oplus k$, x the Expansion output and k the key

If we know:
- The fault δ
- The Expansion output x
- If $S(x \oplus k \oplus \delta) = S(x \oplus k)$ or not

We deduce information on k

But it's a too restrictive model

- Fault injection does not have a 100% success rate (missed faults)
- The fault value is rarely constant
If the fault value is known

If we know \(S(a \oplus \delta) = S(a) \) we deduce information on \(a \)

During the DES: \(a = x \oplus k \), \(x \) the Expansion output and \(k \) the key

If we know:
- The fault \(\delta \)
- The Expansion output \(x \)
- If \(S(x \oplus k \oplus \delta) = S(x \oplus k) \) or not

We deduce information on \(k \)

But it's a too restrictive model
- Fault injection does not have a 100% success rate (missed faults)
- The fault value is rarely constant
If the fault value is known

If we know \(S(a \oplus \delta) = S(a) \) we deduce information on \(a \)

During the DES: \(a = x \oplus k \), \(x \) the Expansion output and \(k \) the key

If we know:
- The fault \(\delta \)
- The Expansion output \(x \)
- If \(S(x \oplus k \oplus \delta) = S(x \oplus k) \) or not

We deduce information on \(k \)

But it's a too restrictive model

- Fault injection does not have a 100% success rate (missed faults)
- The fault value is rarely constant
Application to the Data Encryption Standard

Attack with known fault

If the fault value is known

If we know $S(a \oplus \delta) = S(a)$ we deduce information on a

During the DES: $a = x \oplus k$, x the Expansion output and k the key

If we know:

- The fault δ
- The Expansion output x
- If $S(x \oplus k \oplus \delta) = S(x \oplus k)$ or not

We deduce information on k

But its a too restrictive model

- Fault injection does not have a 100% success rate (missed faults)
- The fault value is rarely constant

FDTC 15'

To exploit fault injection on non-injective Sboxes

September 13, 2015
Application to the Data Encryption Standard

Attack with known fault

If the fault value is known

If we know $S(a \oplus \delta) = S(a)$ we deduce information on a

During the DES: $a = x \oplus k$, x the Expansion output and k the key

If we know:

- The fault δ
- The Expansion output x
- If $S(x \oplus k \oplus \delta) = S(x \oplus k)$ or not

We deduce information on k

But it's a too restrictive model

- Fault injection does not have a 100% success rate (missed faults)
- The fault value is rarely constant
Characterization stage

Characterization:
- Fault injection with known key
- We estimate a fault occurrence probability p for each fault value

Attack stage

Attack:
- If the fault has no effect
 - For each (δ, p)
 - For each $k \in [0, 63]$
 - If $S(x \oplus k \oplus \delta) = S(x \oplus k)$
 - $\quad counter[k] + = p$
Characterization stage

Characterization:

- Fault injection with known key
- We estimate a fault occurrence probability p for each fault value

Attack stage

Attack:

If the fault has no effect

1. For each (δ, p)
2. For each $k \in \{0, 63\}$
3. If $S(x \oplus k \oplus \delta) = S(x \oplus k)$
4. $\text{counter}[k] + = p$
Characterization stage

Characterization:
- Fault injection with known key
- We estimate a fault occurrence probability p for each fault value

Attack stage

Attack:
If the fault has no effect
- For each (δ, p)
 - For each $k \in [0, 63]$
 - If $S(x \oplus k \oplus \delta) = S(x \oplus k)$
 - $\text{counter}[k] + = p$
Characterization stage

Characterization:
- Fault injection with known key
- We estimate a fault occurrence probability p for each fault value

Attack stage

Attack:
If the fault has no effect
- For each (δ, p)
 - For each $k \in [0, 63]$
 - If $S(x \oplus k \oplus \delta) = S(x \oplus k)$
 - $\text{counter}[k] += p$
Get information when fault has an effect

If the fault has an effect
 For each (δ, p)
 For each $k \in \mathbb{Z}_{64}$
 If $S(x \oplus k \oplus \delta) = S(x \oplus k)$
 $\text{counter}[k] = p$
Get information when fault has an effect

If the fault has an effect
 . For each (δ, p)
 . . For each $k \in [0, 63]$
 . . . If $S(x \oplus k \oplus \delta) = S(x \oplus k)$
 $\text{counter}[k] \leftarrow p$
Get information when fault has an effect

If the fault has an effect
 . For each \((\delta, p)\)
 . . For each \(k \in [0, 63]\)
 . . . If \(S(x \oplus k \oplus \delta) = S(x \oplus k)\)
 \(\text{counter}[k] = p\)

To exploit fault injection on non-injective Sboxes
Combined algorithm

For each \((\delta, p)\)
 . For each \(k \in [0, 63]\)
 . . If \(S(x \oplus k \oplus \delta) = S(x \oplus k)\)
 . . . If the fault has an effect
 \(counter[k] -= p\)
 . . . else
 \(counter[k] += p\)
How it works with masked implementation

- To build a masked Sbox S': $\forall a$
 $$S'(a \oplus z_1) = S(a) \oplus z_2$$

- Then
 $$\text{if } S'(a \oplus z_1 \oplus \delta) = S'(a \oplus z_1)$$
 $$\implies \text{we have } S(a \oplus \delta) \oplus z_2 = S(a) \oplus z_2$$

$$S(a \oplus \delta) = S(a)$$
To build a masked Sbox S': $\forall a$

$$S'(a \oplus z_1) = S(a) \oplus z_2$$

Then

if

$$S'(a \oplus z_1 \oplus \delta) = S'(a \oplus z_1)$$

we have

$$S(a \oplus \delta) \oplus z_2 = S(a) \oplus z_2$$

$$S(a \oplus \delta) = S(a)$$
How it works with masked implementation

- To build a masked Sbox S': $\forall a$

$$S'(a \oplus z_1) = S(a) \oplus z_2$$

- Then

$$S'(a \oplus z_1 \oplus \delta) = S'(a \oplus z_1)$$

we have

$$S(a \oplus \delta) \oplus z_2 = S(a) \oplus z_2$$

$$S(a \oplus \delta) = S(a)$$
1 Introduction
 ■ Overview of fault attacks
 ■ Principle of our attack

2 Application to the Data Encryption Standard
 ■ Data Encryption Standard
 ■ Attack Simulation
 ■ Countermeasures

3 Conclusion
Random plaintexts and random keys
Theoretical fault distribution
Mean of 1000 simulations
Fault Distribution

\[
\begin{align*}
HW(\delta) = 0 & \rightarrow p = 0 \\
HW(\delta) = 1 & \rightarrow p = 0 \\
HW(\delta) = 2 & \rightarrow p = 0.013 \\
HW(\delta) = 3 & \rightarrow p = 0.02 \\
HW(\delta) = 4 & \rightarrow p = 0.027 \\
HW(\delta) = 5 & \rightarrow p = 0 \\
HW(\delta) = 6 & \rightarrow p = 0
\end{align*}
\]
Rank of the key when fault number increases
Comparison between the 3 possible models

![Graph showing comparison between fault injection models](image)
1 Introduction
 ■ Overview of fault attacks
 ■ Principle of our attack

2 Application to the Data Encryption Standard
 ■ Data Encryption Standard
 ■ Attack Simulation
 ■ Countermeasures

3 Conclusion
Countermeasures

Fault counter

- Do the calculus twice, compare and increase the counter in case of different results
- When the counter limit is reached: Block the device

- Our attack is theoretically possible
- The success depends on the counter limit

An error correction countermeasure

- Do the calculus three times
- Return the result obtained twice

- The attacker cannot know if a fault has an effect or not
- Our attack is no longer possible
Fault counter

- Do the calculus twice, compare and increase the counter in case of different results
- When the counter limit is reached: Block the device
- Our attack is theoretically possible
- The success depends on the counter limit

An error correction countermeasure

- Do the calculus three times
- Return the result obtained twice
- The attacker cannot know if a fault has an effect or not
- Our attack is no longer possible
Fault counter

- Do the calculus twice, compare and increase the counter in case of different results
- When the counter limit is reached: Block the device

- Our attack is theoretically possible
- The success depends on the counter limit

An error correction countermeasure

- Do the calculus three times
- Return the result obtained twice

- The attacker cannot know if a fault has an effect or not
- Our attack is no longer possible
Fault counter
- Do the calculus twice, compare and increase the counter in case of different results
- When the counter limit is reached: Block the device
- Our attack is theoretically possible
- The success depends on the counter limit

An error correction countermeasure
- Do the calculus three times
- Return the result obtained twice
- The attacker cannot know if a fault has an effect or not
- Our attack is no longer possible
Introduction
- Overview of fault attacks
- Principle of our attack

Application to the Data Encryption Standard
- Data Encryption Standard
- Attack Simulation
- Countermeasures

Conclusion
Comparison

<table>
<thead>
<tr>
<th>Safe Error</th>
<th>DFA</th>
<th>CFA</th>
<th>Our Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Works with masked implementation</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Does not need to encrypt the same plaintext</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Does not need to know the calculus output</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Fault number ≃</td>
<td>100</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>
Conclusion

Comparison

<table>
<thead>
<tr>
<th></th>
<th>Safe Error</th>
<th>DFA</th>
<th>CFA</th>
<th>Our Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Works with masked implementation</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Does not need to encrypt the same plaintext</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Does not need to know the calculus output</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Fault number \approx</td>
<td>100</td>
<td>10</td>
<td>100</td>
<td>10000</td>
</tr>
</tbody>
</table>
Conclusion

Comparison

<table>
<thead>
<tr>
<th></th>
<th>Safe Error</th>
<th>DFA</th>
<th>CFA</th>
<th>Our Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Works with masked implementation</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Does not need to encrypt the same plaintext</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Does not need to know the calculus output</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>Fault number (\sim)</td>
<td>100</td>
<td>10</td>
<td>100</td>
<td>10000</td>
</tr>
<tr>
<td>Safe Error</td>
<td>DFA</td>
<td>CFA</td>
<td>Our Attack</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----</td>
<td>-----</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Works with masked implementation</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Does not need to encrypt the same plaintext</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Does not need to know the calculus output</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>Fault number \approx</td>
<td>100</td>
<td>10</td>
<td>100</td>
<td>10000</td>
</tr>
</tbody>
</table>
Conclusion

The End

Any Questions?
Any Questions?