A Practical Second-Order Fault Attack against a Real-World Pairing Implementation

Peter Günther
joint work with
Johannes Blömer Ricardo Gomes da Silva Juliane Krämer Jean-Pierre Seifert

University of Paderborn
Technical University of Berlin

FDTC 2014, September 23, 2014, Busan
The role of the final exponentiation

Two step pairing computation

\[e : \mathcal{E}(\mathbb{F}_{p^k}) \times \mathcal{E}(\mathbb{F}_{p^k}) \rightarrow \mathbb{F}_{p^k}^* \]

\[(P, Q) \mapsto f_{r,P}(Q)^d \]

1. \(\alpha \leftarrow f_{r,P}(Q) \) (Miller step)
2. \(\beta \leftarrow \alpha^d \) with \(d = (p^k - 1)/r \) (final exponentiation)

1. Computes non-degenerate, bilinear mapping to \(\mathbb{F}_{p^k}^*/(\mathbb{F}_{p^k}^*)^r \).
2. Maps equivalence classes \(\mathbb{F}_{p^k}^*/(\mathbb{F}_{p^k}^*)^r \) to unique representatives in \(\mu_r \).
Cryptanalysis of pairings

Inversion of both steps is required

1. Search secret Q as one solution of $f_{r,P}(x, y) = \alpha$
 Problem: Function $f_{r,P}(x, y)$ has huge degree r

2. Inversion of final exponentiation $(\cdot)^d = \beta$
 Problem: Difficult to identify the correct d-th root α

\Rightarrow 2nd order attacks required

Cryptanalysis of pairings with fault attacks

1. Reduce degree of $f_{r,P}(x, y)$ by modification of r, P, Q

2. Make $(\cdot)^d$ as injective as possible
Fault attacks on pairings

Cryptanalysis of pairings

Inversion of both steps is required

1. Search secret Q as one solution of $f_{r,P}(x, y) = \alpha$
 Problem: Function $f_{r,P}(x, y)$ has huge degree r

2. Inversion of final exponentiation $(\cdot)^d = \beta$
 Problem: Difficult to identify the correct d-th root α

\Rightarrow 2nd order attacks required

Our 2nd order attack

1. Round reduction of Miller loop: obtain $f_{r',P}(x, y)$ of degree $r' = 5$.

2. Skipping final exponentiation
Fault attacks on pairings

Outline of our attack

1. Assumption: attacker with physical access to target (especially CPU clock)
2. Trigger computation of $e(P, Q)$ on public argument (e.g. P) and secret argument (e.g. Q)
3. Distort computation of $e(P, Q)$ by clock glitch to obtain β'
4. Compute secret Q from β'
Our attack: Schematic Hardware Setup

Glitcher
(delay,duration)
Queue
...

Timer

33 MHz
99 MHz

Queue
(delay,duration)

*.py

Host

*.log
*.py

Target

tgt_clk
tgt_io
tgt_rst

CPU

Mechanism: CPU clock glitching

Effect: Instruction skips

99 MHz (f)
33 MHz (f)

Peter Günther (UPB)
2nd order fault attack on PBC

FDTC 2014 5 / 16
Our attack: Schematic Hardware Setup

- Mechanism: CPU clock glitching
- Effect: Instruction skips

Glitcher

33 MHz

99 MHz

Timer

Queue

(delay,duration)

*.py

Host

*.log

*.py

Target

CPU

tgt_clk
tgt_io
tgt_rst

Mechanism: CPU clock glitching
Effect: Instruction skips
Our attack: Schematic Hardware Setup

- **Mechanism:** CPU clock glitching
- **Effect:** Instruction skips

99 MHz (f_h) ____________________________
33 MHz (f_i) ____________________________

Glitcher

Glitcher
Our attack: Schematic Hardware Setup

- **Mechanism:** CPU clock glitching
- **Effect:** Instruction skips

Glitcher

```
33 MHz
99 MHz
```

Timer

```
(delay,duration)
```

Queue

```
*(delay,duration)*
```

Host

```
*.log
*.py
```

Target

```
33 MHz
99 MHz
tgt_clk
tgt_io
tgt_rst
```

CPU

```
tgt_clk
tgt_io
```

```
99 MHz \( (f_h) \)
33 MHz \( (f_i) \)
gl_clk
```

Peter Günther (UPB)
2nd order fault attack on PBC
FDTC 2014 5 / 16
Our attack: Schematic Hardware Setup

- Mechanism: CPU clock glitching
- Effect: Instruction skips

Mechanism: CPU clock glitching
Effect: Instruction skips
Our attack: Schematic Hardware Setup

- **Mechanism:** CPU clock glitching
- **Effect:** Instruction skips

Glitcher

- (delay, duration)
- \((t_1, d_1) = (3, 2)\)
- \((t_2, d_2) = (2, 1)\)

Queue

Host
- *.log
- *.py

Target
- tgt_clk
- tgt_io
- tgt_rst

CPU

- 33 MHz
- 99 MHz

Mechanism:

- 99 MHz \((f_h)\)
- 33 MHz \((f_l)\)

- gl_clk

- \(t_1\)
- \(d_1\)

- 0 1 2 3 4 5 6 7 8 9
Our attack: Schematic Hardware Setup

- **Mechanism:** CPU clock glitching
- **Effect:** Instruction skips

- Glitcher
 - (delay, duration)
 - (t_2, d_2) = (2, 1)

- Timer
 - 33 MHz
 - 99 MHz

- Queue

- Host
 - *.log
 - *.py

- Target
 - tgt_clk
 - tgt_io
 - tgt_rst

- CPU

- 99 MHz (f_h)
 - 33 MHz (f_i)
 - gl_clk

- (t_1, d_1) = (2, 1)
Our attack: Schematic Hardware Setup

- Mechanism: CPU clock glitching
- Effect: Instruction skips

99 MHz (f_h) 33 MHz (f_i)
gl_clk

\[(t_2, d_2) = (2, 1)\]
Our attack: Schematic Hardware Setup

- Mechanism: CPU clock glitching
- Effect: Instruction skips

Mechanism: CPU clock glitching

Effect: Instruction skips

- Mechanism: CPU clock glitching
- Effect: Instruction skips

99 MHz \((f_h)\)

33 MHz \((f_l)\)

gl_clk

\(t_1\)

\(d_1\)

\(t_2\)

\(d_2\)

Peter Günther (UPB) 2nd order fault attack on PBC FDTC 2014
Our attack: Schematic Hardware Setup

- Mechanism: CPU clock glitching
- Effect: Instruction skips

99 MHz \((f_h) \)
33 MHz \((f_l) \)
gl_clk

\(t_1 \) \(d_1 \) \(t_2 \) \(d_2 \)
Our attack: Real Hardware Setup
Our target: Eta pairing of Relic toolkit on AVR

- Target hardware: Atmel AVR Xmega A1
- Target Software: Relic toolkit
 - Open source
 - Prime and Binary field arithmetic
 - Elliptic curves over prime and binary fields (NIST curves and pairing-friendly curves)
 - Bilinear maps and related extension fields
 - Cryptographic protocols
- Combination used on wireless sensor nodes as TinyPBC
- Unmodified code
 - No additional NOPs
 - No monitors
 - No triggers
Input $P, Q \in \mathcal{E}$, $r = (r_n \ldots r_0)$

Output $f_{r,P}(Q)$

1: $T \leftarrow [2]P$
2: $\alpha \leftarrow l_{P,P}(Q) \cdot l_{(r-1)P,P}(Q)$
3: for $j \leftarrow n - 2, \ldots, 1$ do
 4: if $r_j = 1$ then
 5: $T \leftarrow T + P$
 6: $\alpha \leftarrow \alpha \cdot l_{T,P}(Q)$
 7: end if
8: $T \leftarrow [2]T$
9: $\alpha \leftarrow \alpha^2 \cdot l_{T,T}(Q)$
10: end for
11: $\alpha \leftarrow \alpha^d$
12: return α
The RELIC implementation

Input $P, Q \in \mathcal{E}, r = (r_n \ldots r_0)$
Output $f_{r,P}(Q)$

1: $T \leftarrow [2]P$
2: $\alpha \leftarrow l_P, P(Q) \cdot l_{(r-1)P, P}(Q)$
3: for $j \leftarrow n-2, \ldots, 1$ do
4: if $r_j = 1$ then
5: $T \leftarrow T + P$
6: $\alpha \leftarrow \alpha \cdot l_{T, P}(Q)$
7: end if
8: $T \leftarrow [2]T$
9: $\alpha \leftarrow \alpha^2 \cdot l_{T, T}(Q)$
10: end for
11: $\alpha \leftarrow \alpha^d$
12: return α
The RELIC implementation

Input \(P, Q \in \mathcal{E} \), \(r = (r_n \ldots r_0) \)

Output \(f_{r,P}(Q) \)

1. \(T \leftarrow [2]P \)
2. \(\alpha \leftarrow l_{P,P}(Q) \cdot l_{r-1}P,P(Q) \)
3. **for** \(j \leftarrow n - 2, \ldots, 1 \) **do**
 4. **if** \(r_j = 1 \) **then**
 5. \(T \leftarrow T + P \)
 6. \(\alpha \leftarrow \alpha \cdot l_T,P(Q) \)
 7. **end if**
 8. \(T \leftarrow [2]T \)
 9. \(\alpha \leftarrow \alpha^2 \cdot l_T,T(Q) \)
10. **end for**
11. \(\alpha \leftarrow \alpha^d \)
12. return \(\alpha \).
The RELIC implementation

Input $P, Q \in E, r = (r_n \ldots r_0)$

Output $f_{r,P}(Q)$

1: $T \leftarrow [2]P$
2: $\alpha \leftarrow l_{P,P}(Q) \cdot l_{(r-1)P,P}(Q)$
4: if $r_j = 1$ then
5: $T \leftarrow T + P$
6: $\alpha \leftarrow \alpha \cdot l_{T,P}(Q)$
7: end if
8: $T \leftarrow [2]T$
9: $\alpha \leftarrow \alpha^2 \cdot l_{T,T}(Q)$
11: $\alpha \leftarrow \alpha^d$
12: return α

.L2

... call fb4_mul_dx
subi r16,1
sbc r17, __zero_reg__
breq .+2
subi r28,36
... movw r22,r28
movw r24,r28
call etat_exp
pop r29
...

Peter Günther (UPB) 2nd order fault attack on PBC FDTC 2014 8 / 16
The RELIC implementation

Input \(P, Q \in \mathcal{E}, r = (r_n \ldots r_0) \)
Output \(f_{r,P}(Q) \)

1: \(T \leftarrow [2]P \)
2: \(\alpha \leftarrow l_{P,P}(Q) \cdot l_{(r-1)P,P}(Q) \)
3: for \(j \leftarrow n-2, \ldots, 1 \) do
4: if \(r_j = 1 \) then
5: \(T \leftarrow T + P \)
6: \(\alpha \leftarrow \alpha \cdot l_{T,P}(Q) \)
7: end if
8: \(T \leftarrow [2]T \)
9: \(\alpha \leftarrow \alpha^2 \cdot l_{T,T}(Q) \)
10: end for
11: return \(\alpha \)

.L2
...
call fb4_mul_dxs
sbc r17,___zero_reg___
breq .+2
subi r28,36
...
movw r22,r28
movw r24,r28
pop r29
...
The RELIC implementation

Input \(P, Q \in \mathcal{E}, r = (r_n \ldots r_0) \)

Output \(f_{r,P}(Q) \)

1: \(T \leftarrow [2]P \)
2: \(\alpha \leftarrow l_{P,P}(Q) \cdot l_{r-1,P,P}(Q) \)

3: \textbf{if} \(r_j = 1 \) \textbf{then}
4: \(T \leftarrow T + P \)
5: \(\alpha \leftarrow \alpha \cdot l_{T,P}(Q) \)
6: \textbf{end if}
7: \(T \leftarrow [2]T \)
8: \(\alpha \leftarrow \alpha^2 \cdot l_{T,T}(Q) \)

9: \textbf{return} \(\alpha \)

```assembly
.L2
...  
call fb4_mul_dx
subi r16,1
sbc r17,___zero_reg___
breq .+2
...  
subi r28,36
...  
movw r22,r28
movw r24,r28
...  
pop r29
...  
```
1. Output with successful glitch:

\[\beta' = (l_{P,P}(Q) \cdot l_{(n-1)P,P}(Q))^2 \cdot l_{2P,2P}(Q) \]

2. Capture secret as root of polynomial of degree 5:

\[f(x, y) = \beta' - (l_{P,P}(x, y) \cdot l_{(r-1)P,P}(x, y))^2 \cdot l_{2P,2P}(x, y) \]

3. Compute simultaneous roots of \(f(x, y) \) and \(E : y^2 = x^3 - x \)

4. Test candidates \(Q' \) against result of correct pairing:

\[e(P, Q') = e(P, Q)? \]
Timing of first fault is critical

The challenge for 2nd order attack

- The timings t_1, t_2 of the target instructions depend on unknown secret (e.g. Q)
- It is not possible to detect case where only one glitch is successful
- Many combinations have to be tested

Our strategy

1. Profiling: Determine probability distribution of t_1 and t_2 for randomized secret input (e.g. Q)
2. Attack:
 - Rank candidates for t_1 and t_2 according to their probability
 - Introduce fault as early as possible
3. Analysis: Full Automation
Output with successful glitch:

$$\beta' = (l_{P,P}(Q),P(Q))^{2} \cdot l_{2P,2P}(Q)$$

Capture secret as root of polynomial of degree 5:

$$f(x, y) = \beta' - (l_{P,P}(x,y))^{2} \cdot l_{2P,2P}(x,y)$$

Compute simultaneous roots of $f(x, y)$ and $\mathcal{E}: y^2 = x^3 - x$

Test candidates Q' for correctness of correct pairing:

$$e(P, Q') = e(P, Q)?$$
Performance of the attack

- In < 10 seconds per experiment (average):
 - Self-tests
 - Configure glitcher
 - Restart target
 - Induce faults
 - Analyze result

- More than 10000 experiments per day
Conclusion

- Second order attacks on pairings possible
- Two stage computation: not enough protection
- Add dedicated countermeasures as protection against active attacks
Problem

Final exponentiation cannot always be skipped:

- Inlining at higher optimization levels
- Countermeasures that guarantee execution of function

Example (Inlining at higher optimization levels)

```
... movw r22,r28
movw r24,r28
call etat_exp
pop r29
...  
... movw r22,r28
movw r24,r28
jmp etat_exp
nop
...  
```
Our approach

- Skip part of final exponentiation to modify exponent:

\[d = \frac{p^k - 1}{r} \rightarrow d' = \frac{p^k - 1}{r} + \delta \]

- Simplify mathematical inversion of final exponent \(d' \)
References

- Relic toolkit:
 http://code.google.com/p/relic-toolkit/

- Glitcher Die Datenkrake:
 https://www.usenix.org/conference/woot13/workshop-program/presentation/nedospasov
Background

The basic building block

Bilinear mapping:

\[e : \mathcal{E}(\mathbb{F}_{p^k}) \times \mathcal{E}(\mathbb{F}_{p^k}) \rightarrow \mathbb{F}_{p^k}^{*} \]

\[(P, Q) \mapsto f_{n,P}(Q)^d \]

- \(n, d \) are huge
- \(f_{n,P}(x, y) \): zero of order \(n \) at \(P \), degree \(> n \)

Interesting properties for application in cryptography

- Bilinearity: \(e(aP, bQ) = e(P, Q)^{ab} = e(bP, aQ) \)
- Hard to invert
- \(f_{n,P}(Q) \) is efficiently computable with Miller algorithm
An example Application: IBE

Encryption

\[B = e(sP, rH("Bob")) \]

To: "Bob"

\[\langle rP, M*B \rangle \]

Decryption

\[M*B/e(rP, sH("bob")) \]

To: "Bob"
An example Application: IBE

Encryption

\[B = e(sP, rH("Bob")) \]

To: "Bob"

\(<rP, M*B>\)

Decryption

ID of Bob

\[M*B/e(rP, sH("bob")) \]

To: "Bob"

\(<rP, M*B>\)

The secret decryption key is one argument of the pairing.
Miller Algorithm (Victor Miller 1986)
Extending the elliptic curve double and add algorithm

\[y^2 = x^3 - x \]

Input \(P, Q \in \mathcal{E}, n = (n_{t-1} \ldots n_0) \)

Output \(f_{n,P}(Q) \)

1. \(\alpha \leftarrow 1, T \leftarrow P \)
2. **for** \(j \leftarrow t - 2, \ldots, 0 \) **do**
3. \(\alpha \leftarrow \alpha^2 \cdot l_{T,T}(Q)/v_{2T}(Q) \)
4. \(T \leftarrow 2T \)
5. **if** \(n_j = 1 \) **then**
6. \(\alpha \leftarrow \alpha \cdot l_{T,P}(Q)/v_{T+P}(Q) \)
7. \(T \leftarrow T + P \)
8. **end if**
9. **end for**
10. **return** \(\alpha^d \)
Miller Algorithm (Victor Miller 1986)
Extending the elliptic curve double and add algorithm

Input $P, Q \in \mathcal{E}$, $n = (n_{t-1} \ldots n_0)$
Output $f_{n,P}(Q)$

1: $\alpha \leftarrow 1$, $T \leftarrow P$
2: for $j \leftarrow t-2, \ldots, 0$ do
3: \hspace{1em} $\alpha \leftarrow \alpha^2 \cdot l_{T,T}(Q)/v_{2T}(Q)$
4: \hspace{1em} $T \leftarrow 2T$
5: \hspace{1em} if $n_j = 1$ then
6: \hspace{2em} $\alpha \leftarrow \alpha \cdot l_{T,P}(Q)/v_{T+P}(Q)$
7: \hspace{1em} $T \leftarrow T + P$
8: \hspace{1em} end if
9: end for
10: return α^d

$y^2 = x^3 - x$
Miller Algorithm (Victor Miller 1986)
Extending the elliptic curve double and add algorithm

Input \(P, Q \in \mathcal{E}, n = (n_{t-1} \ldots n_0) \)
Output \(f_{n,P}(Q) \)

1: \(\alpha \leftarrow 1, T \leftarrow P \)
2: for \(j \leftarrow t - 2, \ldots, 0 \) do
3: \(\alpha \leftarrow \alpha^2 \cdot l_{T,T}(Q)/v_{2T}(Q) \)
4: \(T \leftarrow 2T \)
5: if \(n_j = 1 \) then
6: \(\alpha \leftarrow \alpha \cdot l_{T,P}(Q)/v_{T+P}(Q) \)
7: \(T \leftarrow T + P \)
8: end if
9: end for
10: return \(\alpha^d \)

\[y^2 = x^3 - x \]
Different delays/instructions, same effect

.L2
...
call fb4_mul_dxs // sets zero flag: Z=1
subi r16,1 // re-set zero flag: Z=0
sbc r17, __zero_reg__ // Z=Z
breq .+2 // Z=1: branch
rjmp .L2
subi r28,36
...
Different delays/instructions, same effect

.L2
...
call fb4_mul_dxs
 // sets zero flag: Z=1
subi r16,1
 // re-sets zero flag: Z=0
sbc r17,__.zero_reg__
 // Z=Z
breq .+2
 // Z=1: branch

subi r28,36
...

Peter Günther (UPB)
2nd order fault attack on PBC
FDTC 2014 20 / 16
Different delays/instructions, same effect

.L2
...
call fb4_mul_dxs //sets zero flag: Z=1
subi r16,1 //re-sets zero flag: Z=0
sbc r17,__zero_reg__ //Z=Z
breq .+2 //Z=1: branch
rjmp .L2
subi r28,36
...
Different delays/instructions, same effect

.L2
...
call fb4_mul_dxS // sets zero flag: Z=1
sbc r17, __zero_reg__ // Z=Z
breq .+2 // Z=1: branch
rjmp .L2
subi r28, 36
...
1st order attack
Group delays by output and locate rjmp .L2

subi rjmp .L2

Profiling Output

Output β_4 Output β_2 Output β_2 Output β_1

t_1
1st order attack
Group delays by output and locate `rjmp .L2`

```
subi rjmp .L2
```

Output β_4 matches pattern of profiling
⇒ $t_1 = 6$ is instruction of `rjmp .L2`
Proceed with 2nd order attack and correct setting of t_1