Elliptic Curve Cryptosystems in the Presence of Faults

Marc Joye
Elliptic Curve Cryptosystems in the Presence of Faults
Elliptic Curve Cryptography

- Useful for key exchange, encryption and digital signature
Fault Attacks

- Adversary induces faults during the computation
 - glitches (supply voltage or external clock)
 - temperature
 - light emission (white light or laser)
 - ...

![Diagram of a circuit with key, input, error, and toxic bottle]
This Talk

- Fault attacks and countermeasures for **elliptic-curve cryptosystems**
 - cryptographic primitives vs. cryptographic protocols
- Most known fault attacks are directed to cryptographic primitives
 - notable exception
 - skipping attacks [Schmidt and Herbst, 2008]
 - fault model experimentally validated

- List of research problems
Basics on Elliptic Curves (1/3)

Definition

An elliptic curve over a field \mathbb{K} is the set of points $(x, y) \in E$

$$E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

along with the point O at infinity

- $\text{Char } \mathbb{K} \neq 2, 3 \Rightarrow a_1 = a_2 = a_3 = 0$
- $\text{Char } \mathbb{K} = 2$ (non-supersingular case) $\Rightarrow a_1 = 1, a_3 = a_4 = 0$

Fact

The set $E(\mathbb{K})$ forms an additive group where

- O is the neutral element
- the group law is given by the “chord-and-tangent” rule
Basics on Elliptic Curves (1/3)

Definition

An elliptic curve over a field \mathbb{K} is the set of points $(x, y) \in E$

\[
E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6
\]

along with the point O at infinity

- $\text{Char } \mathbb{K} \neq 2, 3 \Rightarrow a_1 = a_2 = a_3 = 0$
- $\text{Char } \mathbb{K} = 2$ (non-supersingular case) $\Rightarrow a_1 = 1, a_3 = a_4 = 0$

Fact

The set $E(\mathbb{K})$ forms an additive group where

- O is the neutral element
- the group law is given by the “chord-and-tangent” rule
Elliptic curves over \mathbb{R}

$y^2 = x^3 - 7x$

$P = (-2.35, -1.86)$, $Q = (-0.1, 0.836)$

$R = (3.89, -5.62)$
Elliptic curves over \mathbb{R}

- $y^2 = x^3 - 7x$
 - $P = (-2.35, -1.86)$
 - $Q = (-0.1, 0.836)$
 - $R = (3.89, -5.62)$

- $y^2 = x^3 - 3x + 5$
 - $P = (2, 2.65)$
 - $R = (1.11, 2.64)$
Basics on Elliptic Curves (3/3)

\[E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6 \]

- Let \(P = (x_1, y_1) \) and \(Q = (x_2, y_2) \)
- **Group law**
 - \(P + O = O + P = P \)
 - \(-P = (x_1, -y_1 - a_1 x_1 - a_3) \)
 - \(P + Q = (x_3, y_3) \) where
 \[x_3 = \lambda^2 + a_1 \lambda - a_2 - x_1 - x_2, \quad y_3 = (x_1 - x_3) \lambda - y_1 - a_1 x_3 - a_3 \]
 - \(\lambda = \begin{cases}
 \frac{y_1 - y_2}{x_1 - x_2} & \text{[addition]} \\
 \frac{3x_1^2 + 2a_2 x_1 + a_4 - a_1 y_1}{2y_1 + a_1 x_1 + a_3} & \text{[doubling]}
 \end{cases} \)
Basics on Elliptic Curves (3/3)

Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$.

Group law

- $P + O = O + P = P$
- $-P = (x_1, -y_1 - a_1 x_1 - a_3)$
- $P + Q = (x_3, y_3)$ where

\[
x_3 = \lambda^2 + a_1 \lambda - a_2 - x_1 - x_2, \quad y_3 = (x_1 - x_3) \lambda - y_1 - a_1 x_3 - a_3
\]

with $\lambda = \begin{cases}
\frac{y_1 - y_2}{x_1 - x_2} & \text{[addition]} \\
\frac{3x_1^2 + 2a_2x_1 + a_4 - a_1 y_1}{2y_1 + a_1 x_1 + a_3} & \text{[doubling]}
\end{cases}$
Basics on Elliptic Curves (3/3)

\[E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6 \]

- Let \(P = (x_1, y_1) \) and \(Q = (x_2, y_2) \)
- **Group law**
 - \(P + O = O + P = P \)
 - \(-P = (x_1, -y_1 - a_1 x_1 - a_3) \)
 - \(P + Q = (x_3, y_3) \) where
 \[x_3 = \lambda^2 + a_1 \lambda - a_2 - x_1 - x_2, \quad y_3 = (x_1 - x_3) \lambda - y_1 - a_1 x_3 - a_3 \]
 with \(\lambda = \begin{cases}
 \frac{y_1 - y_2}{x_1 - x_2} & \text{[addition]} \\
 \frac{3x_1^2 + 2a_2 x_1 + a_4 - a_1 y_1}{2y_1 + a_1 x_1 + a_3} & \text{[doubling]}
 \end{cases} \)
Basics on Elliptic Curves (3/3)

\[E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6 \]

- Let \(P = (x_1, y_1) \) and \(Q = (x_2, y_2) \)
- **Group law**
 - \(P + O = O + P = P \)
 - \(-P = (x_1, -y_1 - a_1 x_1 - a_3) \)
 - \(P + Q = (x_3, y_3) \) where

\[x_3 = \lambda^2 + a_1 \lambda - a_2 - x_1 - x_2, \quad y_3 = (x_1 - x_3) \lambda - y_1 - a_1 x_3 - a_3 \]

with \(\lambda = \begin{cases} \frac{y_1 - y_2}{x_1 - x_2} & \text{[addition]} \\ \frac{3x_1^2 + 2a_2 x_1 + a_4 - a_1 y_1}{2y_1 + a_1 x_1 + a_3} & \text{[doubling]} \end{cases} \)
EC Primitive

- EC primitive = point multiplication (a.k.a. scalar multiplication)
 \[E(\mathbb{K}) \times \mathbb{Z} \rightarrow E(\mathbb{K}), \quad (P, d) \mapsto Q = [d]P \]

- one-way function

- Cryptographic elliptic curves
 - \(\mathbb{K} = \mathbb{F}_q \) with \(q = p \) (a prime) or \(q = 2^m \)
 - \(\#E(\mathbb{K}) = hn \) with \(h \in \{1, 2, 3, 4\} \) and \(n \) prime
 - typical size: \(|n|_2 = 224 \) (\(\approx |\mathbb{K}|_2 \))

Definition (ECDL Problem)

Let \(\mathcal{G} = \langle P \rangle \subseteq E(\mathbb{K}) \) a subgroup of prime order \(n \)

Given points \(P, Q \in \mathcal{G} \), compute \(d \) such that \(Q = [d]P \)
EC Digital Signature Algorithm (1/2)

- Elliptic curve variant of the Digital Signature Algorithm
 - a.k.a. Digital Signature Standard - DSS

- Domain parameters
 - finite field \mathbb{F}_q
 - elliptic curve E/\mathbb{F}_q with $\#E(\mathbb{F}_q) = hn$
 - cofactor $h \leq 4$ and n prime
 - cryptographic hash function H
 - point $G \in E$ of prime order n

$$\{\mathbb{F}_q, E, n, h, H, G\}$$
EC Digital Signature Algorithm (1/2)

- Elliptic curve variant of the Digital Signature Algorithm
 - a.k.a. Digital Signature Standard - DSS
- Domain parameters
 - finite field \(\mathbb{F}_q \)
 - elliptic curve \(E / \mathbb{F}_q \) with \(\#E(\mathbb{F}_q) = h n \)
 - cofactor \(h \leq 4 \) and \(n \) prime
 - cryptographic hash function \(H \)
 - point \(G \in E \) of prime order \(n \)

\[\{ \mathbb{F}_q, E, n, h, H, G \} \]
EC Digital Signature Algorithm (2/2)

- **Key generation:** \(Y = [d]G \) with \(d \leftarrow \{1, \ldots, n - 1\} \)

 \(pk = \{G, Y\} \) and \(sk = \{d\} \)

- **Signing**

 Input message \(m \) and private key \(sk \)

 Output signature \(S = (r, s) \)

 1. pick a random \(k \in \{1, \ldots, n - 1\} \)
 2. compute \(T = [k]G \) and set \(r = x(T) \pmod{n} \)
 3. if \(r = 0 \) then goto Step 1
 4. compute \(s = (H(m) + d r)/k \pmod{n} \)
 5. return \(S = (r, s) \)

- **Verification**

 1. compute \(u_1 = H(m)/s \pmod{n} \) and \(u_2 = r/s \pmod{n} \)
 2. compute \(T = [u_1]G + [u_2]Y \)
 3. check whether \(r \equiv x(T) \pmod{n} \)
EC Digital Signature Algorithm (2/2)

- **Key generation:** \(Y = [d]G \) with \(d \leftarrow \{1, \ldots, n - 1\} \)
 \(pk = \{G, Y\} \) and \(sk = \{d\} \)

- **Signing**
 - **Input** message \(m \) and **private key** \(sk \)
 - **Output** signature \(S = (r, s) \)
 1. pick a random \(k \in \{1, \ldots, n - 1\} \)
 2. compute \(T = [k]G \) and set \(r = x(T) \pmod{n} \)
 3. if \(r = 0 \) then goto Step 1
 4. compute \(s = (H(m) + dr)/k \pmod{n} \)
 5. return \(S = (r, s) \)

- **Verification**
 1. compute \(u_1 = H(m)/s \pmod{n} \) and \(u_2 = r/s \pmod{n} \)
 2. compute \(T = [u_1]G + [u_2]Y \)
 3. check whether \(r \equiv x(T) \pmod{n} \)
EC Digital Signature Algorithm (2/2)

- **Key generation:** \(Y = [d]G \) with \(d \leftarrow \{1, \ldots, n - 1\} \)

 \[pk = \{G, Y\} \text{ and } sk = \{d\} \]

- **Signing**

 Input message \(m \) and **private key** \(sk \)

 Output signature \(S = (r, s) \)

1. pick a **random** \(k \in \{1, \ldots, n - 1\} \)
2. compute \(T = [k]G \) and set \(r = x(T) \pmod{n} \)
3. if \(r = 0 \) then goto Step 1
4. compute \(s = (H(m) + d \, r) / k \pmod{n} \)
5. return \(S = (r, s) \)

- **Verification**

1. compute \(u_1 = H(m)/s \pmod{n} \) and \(u_2 = r/s \pmod{n} \)
2. compute \(T = [u_1]G + [u_2]Y \)
3. check whether \(r \equiv x(T) \pmod{n} \)
Public Key Validation

- For each received $pk = \{\text{domain params}, Y\}$, check that
 1. $Y \in E$
 2. $Y \neq O$
 3. (optional) $[n]Y = O$
EC Diffie-Hellman Key Exchange

- ECDH = Elliptic Curve Diffie-Hellman protocol
 - elliptic curve variant of the Diffie-Hellman key exchange

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>R_B</td>
<td>R_A</td>
</tr>
</tbody>
</table>

$K_A = [a]R_B$

$K_B = [b]R_A$

- suffers from the man-in-the-middle attack
 - no data-origin authentication
 - exchanged messages should be signed

- ECMQV = Elliptic Curve Menezes-Qu-Vanstone protocol
 - implicit authentication
EC Diffie-Hellman Key Exchange

- ECDH = **Elliptic Curve Diffie-Hellman protocol**
 - elliptic curve variant of the Diffie-Hellman key exchange

Alice

| a | R_B |

Bob

| R_A | b |

\[
K_A = [a]R_B \\
K_B = [b]R_A
\]

- suffers from the **man-in-the-middle** attack
- no data-origin authentication
- exchanged messages should be signed

ECMQV = **Elliptic Curve Menezes-Qu-Vanstone protocol**
- implicit authentication
EC Diffie-Hellman Key Exchange

- ECDH = Elliptic Curve Diffie-Hellman protocol
 - elliptic curve variant of the Diffie-Hellman key exchange

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>R_A</td>
</tr>
<tr>
<td>R_B</td>
<td>b</td>
</tr>
</tbody>
</table>

$K_A = [a]R_B$ $K_B = [b]R_A$

- suffers from the man-in-the-middle attack
 - no data-origin authentication
 - exchanged messages should be signed

- ECMQV = Elliptic Curve Menezes-Qu-Vanstone protocol
 - implicit authentication
EC Diffie-Hellman Key Exchange

- **ECDH = Elliptic Curve Diffie-Hellman protocol**
 - elliptic curve variant of the Diffie-Hellman key exchange

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>R_A</td>
</tr>
<tr>
<td>R_B</td>
<td>b</td>
</tr>
</tbody>
</table>

- $K_A = [a]R_B$
- $K_B = [b]R_A$

- suffers from the **man-in-the-middle** attack
 - no data-origin authentication
 - exchanged messages should be signed

- **ECMQV = Elliptic Curve Menezes-Qu-Vanstone protocol**
 - implicit authentication
ECDH Augmented Encryption (1/2)

- **ECIES** = Elliptic Curve Integrated Encryption System
 - proposed by Michel Abdalla, Mihir Bellare and Phillip Rogaway in 2000
 - submitted to IEEE P1363a

- **Domain parameters**
 - finite field \mathbb{F}_q
 - elliptic curve E/\mathbb{F}_q with $\#E(\mathbb{F}_q) = hn$
 - “special” hash functions
 - message authentication code $MAC_K(c)$
 - key derivation function $KD(T, \ell)$
 - symmetric encryption algorithm $Enc_K(m)$
 - point $G \in E$ of prime order n

\[
\{\mathbb{F}_q, E, n, h, MAC, KD, Enc, G\}\]
ECDH Augmented Encryption (1/2)

- **ECIES** = **Elliptic Curve Integrated Encryption System**
 - proposed by Michel Abdalla, Mihir Bellare and Phillip Rogaway in 2000
 - submitted to IEEE P1363a

- **Domain parameters**
 - finite field \mathbb{F}_q
 - elliptic curve E/\mathbb{F}_q with $\#E(\mathbb{F}_q) = hn$
 - “special” hash functions
 - message authentication code $MAC_K(c)$
 - key derivation function $KD(T, \ell)$
 - symmetric encryption algorithm $Enc_K(m)$
 - point $G \in E$ of prime order n

\[\{ \mathbb{F}_q, E, n, h, MAC, KD, Enc, G \} \]
Key generation: $Y = [d]G$ with $d \xleftarrow{\$} \{1, \ldots, n - 1\}$

$pk = \{G, Y\}$ and $sk = \{d\}$

ECIES encryption

1. pick a random $k \in \{1, \ldots, n - 1\}$
2. compute $U = [k]G$ and $T = [k]Y$
3. set $(K_1' || K_2') = KD(T, l)$
4. compute $c = Enc_{K_1}(m)$ and $r = MAC_{K_2}(c)$
5. return (U, c, r)

ECIES decryption

Input ciphertext (U, c, r) and private key sk

Output plaintext m or ⊥

1. compute $T' = [d]U$
2. set $(K_1' || K_2') = KD(T', l)$
3. if $MAC_{K_2}(c) = r$ then return $m = Enc_{K_1'}^{-1}(c)$
ECDH Augmented Encryption (2/2)

- **Key generation:** \(Y = [d]G \) with \(d \leftarrow \{1, \ldots, n - 1\} \)

 \(pk = \{G, Y\} \) and \(sk = \{d\} \)

- **ECIES encryption**
 1. pick a random \(k \in \{1, \ldots, n - 1\} \)
 2. compute \(U = [k]G \) and \(T = [k]Y \)
 3. set \((K_1||K_2) = KD(T, l)\)
 4. compute \(c = Enc_{K_1}(m) \) and \(r = MAC_{K_2}(c) \)
 5. return \((U, c, r)\)

- **ECIES decryption**
 1. Input ciphertext \((U, c, r)\) and private key \(sk\)
 2. Output plaintext \(m \) or \(\perp \)
 3. compute \(T' = [d]U \)
 4. set \((K'_1||K'_2) = KD(T', l)\)
 5. if \(MAC_{K'_2}(c) = r \) then return \(m = Enc_{K'_1}^{-1}(c) \)
ECDH Augmented Encryption (2/2)

- **Key generation:** \(Y = [d]G \) with \(d \overset{\$}{\leftarrow} \{1, \ldots, n - 1\} \)

 \[\text{pk} = \{G, Y\} \text{ and } \text{sk} = \{d\} \]

- **ECIES encryption**
 1. pick a random \(k \in \{1, \ldots, n - 1\} \)
 2. compute \(U = [k]G \) and \(T = [k]Y \)
 3. set \((K_1 || K_2) = KD(T, l) \)
 4. compute \(c = \text{Enc}_{K_1}(m) \) and \(r = \text{MAC}_{K_2}(c) \)
 5. return \((U, c, r)\)

- **ECIES decryption**

 Input ciphertext \((U, c, r)\) and **private key** \(\text{sk}\)

 Output plaintext \(m\) or \(\perp\)
 1. compute \(T' = [d]U \)
 2. set \((K'_1 || K'_2) = KD(T', l) \)
 3. if \(\text{MAC}_{K'_2}(c) = r \) then return \(m = \text{Enc}_{K'_1}^{-1}(c) \)
Outline

1. Elliptic Curves
 - Basics on elliptic curves
 - Elliptic curve digital signature algorithm
 - Other algorithms

2. Attacks
 - Single-bit errors
 - Safe errors
 - Random errors
 - Skipping attacks

3. Countermeasures
 - Basic countermeasures
 - Scalar randomization
 - BOS\(^+\) algorithm
 - New algorithm

4. Conclusion
 - Research problems
Fault Attacks on ECC

- Bit-level vs. byte-level attacks
- Transient vs. permanent faults
- Private vs. public parameters
- Unsigned vs. signed representations
- Fixed vs. changing base point
- Basic vs. provably secure systems
Forcing-Bit Attack

Let \(d = \sum_{i=0}^{\ell-1} d_i 2^i \)

Forcing bit: \(d_j \to 0 \)

ECDSA

Check whether \(S = (r, s) \) is a valid signature

(Similarly applies when \(k_j \to 0 \) in Step 4)

ECIES
Forcing-Bit Attack

- Let \(d = \sum_{i=0}^{\ell-1} d_i 2^i \)
- Forcing bit: \(d_j \rightarrow 0 \)

ECDSA
- Check whether \(S = (r, s) \) is a valid signature
- (Similarly applies when \(k_j \rightarrow 0 \) in Step 4)

ECIES
Forcing-Bit Attack

- Let \(d = \sum_{i=0}^{\ell-1} d_i 2^i \)
- Forcing bit: \(d_j \rightarrow 0 \)

ECDSA

- Check whether \(S = (r, s) \) is a valid signature
 - if so, then \(d_j = 0 \)
 - if not, then \(d_j = 1 \)
- (Similarly applies when \(k_j \rightarrow 0 \) in Step 4)

ECIES
Forcing-Bit Attack

- Let $d = \sum_{i=0}^{\ell-1} d_i 2^i$
- Forcing bit: $d_j \rightarrow 0$

ECDSA

- Check whether $S = (r, s)$ is a valid signature
 - if so, then $d_j = 0$
 - if not, then $d_j = 1$
- (Similarly applies when $k_j \rightarrow 0$ in Step 4)

ECIES
Forcing-Bit Attack

- Let $d = \sum_{i=0}^{\ell-1} d_i 2^i$
- Forcing bit: $d_j \rightarrow 0$

ECDSA

- Check whether $S = (r, s)$ is a valid signature
 - if so, then $d_j = 0$
 - if not, then $d_j = 1$
 (Similarly applies when $k_j \rightarrow 0$ in Step 4)

ECIES

- Check the ciphertext validity
Forcing-Bit Attack

Let \(d = \sum_{i=0}^{\ell-1} d_i 2^i \)

Forcing bit: \(d_j \rightarrow 0 \)

ECDSA

Check whether \(S = (r, s) \) is a valid signature

- if so, then \(d_j = 0 \)
- if not, then \(d_j = 1 \)

(Similarly applies when \(k_j \rightarrow 0 \) in Step 4)

ECIES

Check the ciphertext validity
Forcing-Bit Attack

- Let \(d = \sum_{i=0}^{\ell-1} d_i 2^i \)
- Forcing bit: \(d_j \rightarrow 0 \)

ECDSA

- Check whether \(S = (r, s) \) is a valid signature
 - if so, then \(d_j = 0 \)
 - if not, then \(d_j = 1 \)
- (Similarly applies when \(k_j \rightarrow 0 \) in Step 4)

ECIES

- Check the ciphertext validity
 - if the output is \(m \) then \(d_j = 0 \)
 - if the output is \(\perp \) then \(d_j = 1 \)
Forcing-Bit Attack

- Let $d = \sum_{i=0}^{\ell-1} d_i 2^i$
- Forcing bit: $d_j \rightarrow 0$

ECDSA

- Check whether $S = (r, s)$ is a valid signature
 - if so, then $d_j = 0$
 - if not, then $d_j = 1$
- (Similarly applies when $k_j \rightarrow 0$ in Step 4)

ECIES

- Check the ciphertext validity
 - if the output is m then $d_j = 0$
 - if the output is \perp then $d_j = 1$
Forcing-Bit Attack

- Let \(d = \sum_{i=0}^{\ell-1} d_i 2^i \)
- Forcing bit: \(d_j \rightarrow 0 \)

ECDSA

- Check whether \(S = (r, s) \) is a valid signature
 - if so, then \(d_j = 0 \)
 - if not, then \(d_j = 1 \)
- (Similarly applies when \(k_j \rightarrow 0 \) in Step 4)

ECIES

- Check the ciphertext validity
 - if the output is \(m \) then \(d_j = 0 \)
 - if the output is \(\perp \) then \(d_j = 1 \)
Flipping-Bit Attack

Against ECDSA

- Let $d = \sum_{i=0}^{\ell-1} d_i 2^i$
- Flipping bit: $d_j \rightarrow \overline{d_j}$

 $$\Rightarrow \hat{s} = (r, \hat{s}) \text{ with } \begin{cases} \hat{s} = (H(m) + \hat{d} r) / k \pmod{n} \\ \hat{d} = (d_j - \overline{d_j}) 2^j + d \end{cases}$$

- Define $\hat{u}_1 = H(m) / \hat{s} \pmod{n}$ and $\hat{u}_2 = r / \hat{s} \pmod{n}$
- Compute $\hat{T} = [\hat{u}_1]G + [\hat{u}_2]Y$
- For $j = 0$ to $\ell - 1$ and $\sigma \in \{-1, 1\}$, check if
 $$x \left(\hat{T} + \left[\frac{\sigma 2^j r}{\hat{s}} \right] G \right) = x([k]G) = r \Rightarrow \overline{d_j} - d_j = \sigma$$

 $$\Rightarrow d_j = \frac{1 - \sigma}{2}$$
Flipping-Bit Attack

Against ECDSA

- Let \(d = \sum_{i=0}^{\ell-1} d_i 2^i \)
- Flipping bit: \(d_j \rightarrow \overline{d_j} \)

\[
\Rightarrow \hat{S} = (r, \hat{s}) \text{ with } \begin{cases}
\hat{s} = (H(m) + \hat{d} r) / k \pmod{n} \\
\hat{d} = (d_j - d_j) 2^j + d
\end{cases}
\]

- Define \(\hat{u}_1 = H(m) / \hat{s} \pmod{n} \) and \(\hat{u}_2 = r / \hat{s} \pmod{n} \)
- Compute \(\hat{T} = [\hat{u}_1]G + [\hat{u}_2]Y \)
- For \(j = 0 \) to \(\ell - 1 \) and \(\sigma \in \{-1, 1\} \), check if

\[
x \left(\hat{T} + \left[\frac{\sigma 2^j r}{\hat{s}} \right] G \right) = x([k]G) = r \Rightarrow \overline{d}_j - d_j = \sigma \\
\Rightarrow d_j = \frac{1 - \sigma}{2}
\]
Flipping-Bit Attack

Against ECDSA

- Let $d = \sum_{i=0}^{\ell-1} d_i 2^i$
- Flipping bit: $d_j \rightarrow \overline{d_j}$

$$\Rightarrow \hat{S} = (r, \hat{s}) \text{ with } \begin{cases} \hat{s} = (H(m) + \hat{d} r)/k \pmod{n} \\ \hat{d} = (\overline{d_j} - d_j)2^j + d \end{cases}$$

- Define $\hat{u}_1 = H(m)/\hat{s} \pmod{n}$ and $\hat{u}_2 = r/\hat{s} \pmod{n}$
- Compute $\hat{T} = [\hat{u}_1]G + [\hat{u}_2]Y$
- For $j = 0$ to $\ell - 1$ and $\sigma \in \{-1, 1\}$, check if

$$x(\hat{T} + \left[\frac{\sigma 2^j r}{\hat{s}}\right]G) = x([k]G) = r \Rightarrow \overline{d_j} - d_j = \sigma \Rightarrow d_j = \frac{1-\sigma}{2}$$
Flipping-Bit Attack

Against ECDSA

- Let \(d = \sum_{i=0}^{\ell-1} d_i 2^i \)
- Flipping bit: \(d_j \rightarrow \overline{d_j} \)

\[\Rightarrow \hat{s} = (r, \hat{s}) \text{ with } \begin{cases} \hat{s} = (H(m) + \hat{d} r)/k \pmod{n} \\ \hat{d} = (\overline{d_j} - d_j)2^j + d \end{cases} \]

- Define \(\hat{u}_1 = H(m)/\hat{s} \pmod{n} \) and \(\hat{u}_2 = r/\hat{s} \pmod{n} \)
- Compute \(\hat{T} = [\hat{u}_1]G + [\hat{u}_2]Y \)
- For \(j = 0 \) to \(\ell - 1 \) and \(\sigma \in \{-1, 1\} \), check if

\[x \left(\hat{T} + \left[\frac{\sigma 2^j r}{\hat{s}} \right] G \right) = x([k]G) = r \Rightarrow \overline{d_j} - d_j = \sigma \]

\[\Rightarrow d_j = \frac{1-\sigma}{2} \]
Flipping-Bit Attack

Against ECDSA

- Let \(d = \sum_{i=0}^{\ell-1} d_i 2^i \)
- Flipping bit: \(d_j \rightarrow \bar{d_j} \)

\[
\Rightarrow \hat{S} = (r, \hat{s}) \quad \text{with} \quad \begin{cases}
\hat{s} = (H(m) + \hat{d} r)/k \pmod{n} \\
\hat{d} = (\bar{d_j} - d_j)2^j + d
\end{cases}
\]

- Define \(\hat{u}_1 = H(m)/\hat{s} \pmod{n} \) and \(\hat{u}_2 = r/\hat{s} \pmod{n} \)
- Compute \(\hat{T} = [\hat{u}_1]G + [\hat{u}_2]Y \)
- For \(j = 0 \) to \(\ell - 1 \) and \(\sigma \in \{-1, 1\} \), check if

\[
x \left(\hat{T} + \left[\frac{\sigma 2^j r}{\hat{s}} \right] G \right) = x([k]G) = r \Rightarrow \bar{d_j} - d_j = \sigma \\
\Rightarrow d_j = \frac{1-\sigma}{2}
\]
Sign-Change Fault Attack

- Point inversion is inexpensive on elliptic curves
 \[P = (x_1, y_1) \Rightarrow -P = (x_1, -y_1 - a_1 x_1 - a_3) \]
- Signed-digit point multiplication algorithms are preferred for computing
 \[Q = [d]P \]
 - e.g., NAF-based method gives a speed-up factor of 11.11%
- \(d = \sum_{i=0}^{\ell} \delta_i 2^i \) with \(\delta_i \in \{0, 1, -1\} \)
- Signed-digit encoding: \(\delta_i = (\text{sign bit}, \text{value bit}) \),
 \[0 = (\star, 0), \quad 1 = (0, 1), \quad -1 = (1, 1) \]

Sign-change fault attack (specialized flipping-bit attack)

Induce a fault in the sign bit of \(\delta_i \)
- on the fly
- during exponent recoding
Safe-Error Attack (1/2)

- Double-and-add-\textit{always} algorithm
 - additive variant of the square-and-multiply-\textit{always}

\begin{align*}
\text{Input: } & \mathbf{U}, d = (d_{\ell-1}, \ldots, d_0)_2 \\
\text{Output: } & T = [d]\mathbf{U}
\end{align*}

1. $R_0 \leftarrow O; R_1 \leftarrow O$
2. For $i = \ell - 1$ downto 0 do
 - $R_0 \leftarrow [2]R_0$
 - $b \leftarrow 1 - d_i; R_b \leftarrow R_b + \mathbf{U}$
3. Return R_0

- when $b = 1$, there is a \textit{dummy} point addition
Safe-Error Attack (1/2)

- Double-and-add-\textit{always} algorithm
 - additive variant of the square-and-multiply-\textit{always}

\begin{itemize}
 \item Input: $U, d = (d_{\ell-1}, \ldots, d_0)_2$
 \item Output: $T = [d]U$
\end{itemize}

\begin{algorithm}
\begin{algorithmic}
\State $R_0 \leftarrow O$; $R_1 \leftarrow O$
\For{$i = \ell - 1$ \textbf{downto} 0}
\State $R_0 \leftarrow [2]R_0$
\State $b \leftarrow 1 - d_i$; $R_b \leftarrow R_b + U$
\EndFor
\State Return R_0
\end{algorithmic}
\end{algorithm}

- when $b = 1$, there is a dummy point addition
Timely induce a fault into the ALU during the add operation at iteration i

Check the output
- if an invalid ciphertext is notified (i.e., ⊥) then the error was effective
 $d_i = 1$
- if the result is correct then the point addition was dummy [safe error]
 $d_i = 0$

Re-iterate the attack for another value of i
Safe-Error Attack (2/2)

Against ECIES

- **Timely** induce a fault into the ALU during the add operation at iteration i
- Check the output
 - if an invalid ciphertext is notified (i.e., \bot) then the error was effective
 $\Rightarrow d_i = 1$
 - if the result is correct then the point addition was dummy [safe error]
 $\Rightarrow d_i = 0$
- Re-iterate the attack for another value of i
Safe-Error Attack (2/2)

<table>
<thead>
<tr>
<th>Against ECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Timely induce a fault into the ALU during the add operation at iteration i</td>
</tr>
<tr>
<td>- Check the output</td>
</tr>
<tr>
<td>- if an invalid ciphertext is notified (i.e., \perp) then the error was effective $\Rightarrow d_i = 1$</td>
</tr>
<tr>
<td>- if the result is correct then the point addition was dummy [safe error] $\Rightarrow d_i = 0$</td>
</tr>
<tr>
<td>- Re-iterate the attack for another value of i</td>
</tr>
</tbody>
</table>
Safe-Error Attack (2/2)

Against ECIES

- **Timely** induce a fault into the ALU during the add operation at iteration i
- Check the output
 - if an invalid ciphertext is notified (i.e., ⊥) then the error was effective
 $\Rightarrow d_i = 1$
 - if the result is correct then the point addition was dummy [safe error]
 $\Rightarrow d_i = 0$
- Re-iterate the attack for another value of i
Safe-Error Attack (2/2)

Against ECIES

- **Timely** induce a fault into the ALU during the add operation at iteration i
- Check the output
 - if an invalid ciphertext is notified (i.e., ⊥) then the error was effective
 $\Rightarrow d_i = 1$
 - if the result is correct then the point addition was dummy [safe error]
 $\Rightarrow d_i = 0$
- Re-iterate the attack for another value of i
Safe-Error Attack (2/2)

Against ECIES

- **Timely** induce a fault into the ALU during the add operation at iteration i
- Check the output
 - if an invalid ciphertext is notified (i.e., \bot) then the error was effective
 \[\Rightarrow d_i = 1 \]
 - if the result is correct then the point addition was dummy [safe error]
 \[\Rightarrow d_i = 0 \]
- Re-iterate the attack for another value of i
Errors in Public Routines

- Digital signatures are often used for authentication purposes
 - e.g., only signed software can run on a given device
- Idea: inject a fault during the verification process

Public routines (parameters) should be checked for faults
Errors in Public Routines

- Digital signatures are often used for authentication purposes
 - e.g., only signed software can run on a given device
- Idea: inject a fault during the verification process

Public routines (parameters) should be checked for faults
Random Errors Against EC Primitive

Attack model
- EC parameters are in non-volatile memory
 - permanent faults in a unknown position, in any system parameter
 - transient fault during parameter transfer

Adversary’s goal
- Recover the value of d in the computation of $Q = [d]P$
Key Observation (1/2)

\[E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6 \]

- Let \(P = (x_1, y_1) \) and \(Q = (x_2, y_2) \)
- \(P + Q = (x_3, y_3) \) where
 \[
 x_3 = \lambda^2 + a_1 \lambda - a_2 - x_1 - x_2, \quad y_3 = (x_1 - x_3) \lambda - y_1 - a_1 x_3 - a_3
 \]

 with \(\lambda = \begin{cases}
 \frac{y_1 - y_2}{x_1 - x_2} & \text{[addition]} \\
 \frac{3x_1^2 + 2a_2 x_1 + a_4 - a_1 y_1}{2y_1 + a_1 x_1 + a_3} & \text{[doubling]}
 \end{cases} \)

- Parameter \(a_6 \) is not involved in point addition (or point doubling)
Key Observation (2/2)

\[E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6 \]

If a ‘point’ \(\tilde{P} = (\tilde{x}, \tilde{y}) \in \mathbb{F}_q \times \mathbb{F}_q \) but \(\tilde{P} \notin E \) then the computation of \(\tilde{Q} = [d] \tilde{P} \) will take place on the curve

\[\tilde{E} : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + \tilde{a}_6 \]

where \(\tilde{a}_6 = \tilde{y}^2 + a_1 \tilde{x} \tilde{y} + a_3 \tilde{y} - \tilde{x}^3 - a_2 \tilde{x}^2 - a_4 \tilde{x} \)

Now if

1. \(\text{ord}_{\tilde{E}}(\tilde{P}) = t \) is small
2. discrete logarithms are computable in \(\langle \tilde{P} \rangle \)

then

\[d \pmod{t} \]

can be recovered from \(\tilde{Q} \)
Chosen Input Point Attack

Construct a ‘point’ \(\tilde{P}_i = (\tilde{x}_i, \tilde{y}_i) \in \tilde{E}_i \) such that

1. \(\text{ord}_{\tilde{E}_i}(\tilde{P}_i) = t_i \) is small
2. discrete logarithms are computable in \(\langle \tilde{P}_i \rangle \)

Query the device with \(\tilde{P}_i \) and receive \(\tilde{Q}_i = [d]\tilde{P}_i \)

Solve the discrete logarithm and recover \(d \pmod{t_i} \)

Iterating the process gives

- \(d \pmod{t_i} \) for several \(t_i \)
- \(d \) by Chinese remaindering

(This attack can easily be prevented using the curve equation)
Faults in the Base Point

Recover d in $Q = [d]P$ on $E_{/\mathbb{F}_p} : y^2 = x^3 + a_4x + a_6$

- Fault: $P = (x_1, y_1) \rightarrow \hat{P} = (\hat{x}_1, y_1) \in \tilde{E}$
- Device outputs $\hat{Q} = [d]\hat{P}$
- $\hat{Q} = [d](\hat{x}_1, y_1) = (\hat{x}_d, \hat{y}_d) \in \tilde{E}$
 $\Rightarrow \hat{a}_6 = \hat{y}_d^2 - \hat{x}_d^3 - a_4\hat{x}_d \pmod{p}$
- \hat{x}_1 is a root in $\mathbb{F}_p[X]$ of $X^3 + a_4X + \hat{a}_6 - y_1^2$
- Compute $d \pmod{t}$ from $\hat{Q} = [d]\hat{P}$

- Similar attack when the y-coordinate of P is corrupted
- More assumptions are needed when both coordinates are corrupted
Faults in the Base Point

Recover d in $Q = [d]P$ on $E_{/F_p} : y^2 = x^3 + a_4x + a_6$

- **Fault:** $P = (x_1, y_1) \rightarrow \hat{P} = (\hat{x}_1, y_1) \in \tilde{E}$
- Device outputs $\hat{Q} = [d]\hat{P}$
- $\hat{Q} = [d](\hat{x}_1, y_1) = (\hat{x}_d, \hat{y}_d) \in \tilde{E}$
 $\Rightarrow \tilde{a}_6 = \hat{y}_d^2 - \hat{x}_d^3 - a_4\hat{x}_d \pmod{p}$
- \hat{x}_1 is a root in $F_p[X]$ of $X^3 + a_4X + \tilde{a}_6 - y_1^2$
- Compute $d \pmod{t}$ from $\hat{Q} = [d]\hat{P}$

- Similar attack when the y-coordinate of P is corrupted
- More assumptions are needed when both coordinates are corrupted
Faults in the Base Point

Recover d in $Q = [d]P$ on $E_{/\mathbb{F}_p} : y^2 = x^3 + a_4x + a_6$

- **Fault:** $P = (x_1, y_1) \rightarrow \hat{P} = (\hat{x}_1, y_1) \in \tilde{E}$
- **Device outputs** $\hat{Q} = [d]\hat{P}$
 - $\hat{Q} = [d](\hat{x}_1, y_1) = (\hat{x}_d, \hat{y}_d) \in \tilde{E}$
 - $\Rightarrow \hat{a}_6 = \hat{y}_d^2 - \hat{x}_d^3 - a_4\hat{x}_d \pmod{p}$
- \hat{x}_1 is a root in $\mathbb{F}_p[X]$ of $X^3 + a_4X + \hat{a}_6 - y_1^2$
- **Compute** $d \pmod{t}$ from $\hat{Q} = [d]\hat{P}$

- Similar attack when the y-coordinate of P is corrupted
- More assumptions are needed when both coordinates are corrupted
Faults in the Base Point

Recover \(d\) in \(Q = [d]P\) on \(E_{/\mathbb{F}_p} : y^2 = x^3 + a_4 x + a_6\)

- **Fault:** \(P = (x_1, y_1) \rightarrow \hat{P} = (\hat{x}_1, y_1) \in \tilde{E}\)
- **Device outputs** \(\hat{Q} = [d]\hat{P}\)
- \(\hat{Q} = [d](\hat{x}_1, y_1) = (\hat{x}_d, \hat{y}_d) \in \tilde{E}\)
 \[\Rightarrow \hat{a}_6 = \hat{y}_d^2 - \hat{x}_d^3 - a_4 \hat{x}_d \pmod{p}\]
- \(\hat{x}_1\) is a root in \(\mathbb{F}_p[X]\) of \(X^3 + a_4 X + \hat{a}_6 - y_1^2\)
- **Compute** \(d \pmod{t}\) from \(\hat{Q} = [d]\hat{P}\)

- Similar attack when the \(y\)-coordinate of \(P\) is corrupted
- More assumptions are needed when both coordinates are corrupted
Faults in the Base Point

Recover d in $Q = [d]P$ on $E_{/\mathbb{F}_p}: y^2 = x^3 + a_4x + a_6$

- Fault: $P = (x_1, y_1) \rightarrow \hat{P} = (\hat{x}_1, y_1) \in \tilde{E}$
- Device outputs $\hat{Q} = [d]\hat{P}$
- $\hat{Q} = [d](\hat{x}_1, y_1) = (\hat{x}_d, \hat{y}_d) \in \tilde{E}$
 \[\Rightarrow \hat{a}_6 = \hat{y}_d^2 - \hat{x}_d^3 - a_4\hat{x}_d \pmod{p} \]
- \hat{x}_1 is a root in $\mathbb{F}_p[X]$ of $X^3 + a_4X + \hat{a}_6 - y_1^2$
- Compute $d \pmod{t}$ from $\hat{Q} = [d]\hat{P}$

- Similar attack when the y-coordinate of P is corrupted
- More assumptions are needed when both coordinates are corrupted
Faults in the Base Point

Recover d in $Q = [d]P$ on $E_{/\mathbb{F}_p} : y^2 = x^3 + a_4x + a_6$

- Fault: $P = (x_1, y_1) \rightarrow \hat{P} = (\hat{x}_1, y_1) \in \tilde{E}$
- Device outputs $\hat{Q} = [d]\hat{P}$
- $\hat{Q} = [d](\hat{x}_1, y_1) = (\hat{x}_d, \hat{y}_d) \in \tilde{E}$
 $\Rightarrow \tilde{a}_6 = \hat{y}_d^2 - \hat{x}_d^3 - a_4\hat{x}_d \pmod{p}$
- \hat{x}_1 is a root in $\mathbb{F}_p[X]$ of $X^3 + a_4X + \tilde{a}_6 - y_1^2$
- Compute $d \pmod{t}$ from $\hat{Q} = [d]\hat{P}$

- Similar attack when the y-coordinate of P is corrupted
- More assumptions are needed when both coordinates are corrupted
Faults in the Base Point

Recover d in $Q = [d]P$ on $E/\mathbb{F}_p : y^2 = x^3 + a_4x + a_6$

- Fault: $P = (x_1, y_1) \rightarrow \hat{P} = (\hat{x}_1, y_1) \in \tilde{E}$
- Device outputs $\hat{Q} = [d]\hat{P}$
- $\hat{Q} = [d](\hat{x}_1, y_1) = (\hat{x}_d, \hat{y}_d) \in \tilde{E}$
 \[\Rightarrow \hat{a}_6 = \hat{y}_d^2 - \hat{x}_d^3 - a_4\hat{x}_d \pmod{p} \]
- \hat{x}_1 is a root in $\mathbb{F}_p[X]$ of $X^3 + a_4X + \hat{a}_6 - y_1^2$
- Compute $d \pmod{t}$ from $\hat{Q} = [d]\hat{P}$

- Similar attack when the y-coordinate of P is corrupted
- More assumptions are needed when both coordinates are corrupted
Faults in the Definition Field

Recover d in $Q = [d]P$ on $E_{\mathbb{F}_p} : y^2 = x^3 + a_4x + a_6$

- Fault: $p \rightarrow \hat{p}$
- Device outputs $\hat{Q} = [d]\hat{P}$ with $\hat{P} = (\hat{x}_1, \hat{y}_1)$ and $\hat{x}_1 \equiv x_1 \pmod{\hat{p}}$ and $\hat{y}_1 \equiv y_1 \pmod{\hat{p}}$
- $\hat{Q} = [d](\hat{x}_1, y_1) = (\hat{x}_d, \hat{y}_d) \in \tilde{E}$
 \[\Rightarrow \hat{a}_6 \equiv \hat{y}_d^2 - \hat{x}_d^3 - a_4\hat{x}_d \equiv \hat{y}_1^2 - \hat{x}_1^3 - a_4\hat{x}_1 \pmod{\hat{p}} \]
- \hat{p} divides $(\hat{y}_d^2 - \hat{x}_d^3 - a_4\hat{x}_d) - (\hat{y}_1^2 - \hat{x}_1^3 - a_4\hat{x}_1)$
- Compute $d \pmod{t}$ from $\hat{Q} = [d]\hat{P}$

- Case where p is a Mersenne prime; i.e., $p = 2^m \pm 2^t \pm 1$
Faults in the Curve Parameters

Recover d in $Q = [d]P$ on $E_{\mathbb{F}_p} : y^2 = x^3 + a_4 x + a_6$

- Fault: $a_4 \rightarrow \hat{a}_4$
- Device outputs $\hat{Q} = [d]P$ on $\hat{E} : y^2 = x^3 + \hat{a}_4 x + \tilde{a}_6$
- $\hat{Q} = [d](x_1, y_1) = (\hat{x}_d, \hat{y}_d) \in \hat{E}$
- Two equations:

$$\begin{align*}
y_1^2 &= x_1^3 + \hat{a}_4 x_1 + \tilde{a}_6 \\
\hat{y}_d^2 &= \hat{x}_d^3 + \hat{a}_4 \hat{x}_d + \tilde{a}_6
\end{align*}$$

$\Rightarrow \hat{a}_4 = \ldots, \tilde{a}_6 = \ldots$

- Compute $d \pmod{t}$ from $\hat{Q} = [d]P$
Skipping Attack

Attack assumes that the attacker manages to skip a doubling operation. This can be seen as a random error at the bit level.

Algorithm 1 Double-and-add

Input: $G, k = (k_{\ell-1}, \ldots, k_0)_2$
Output: $Q = [k]G$

1. $R_0 \leftarrow O; R_1 \leftarrow G$
2. for $i = \ell - 1$ down to 0 do
3. $R_0 \leftarrow [2]R_0$
4. if $k_i = 1$ then $R_0 \leftarrow R_0 + R_1$
5. return R_0
Skipping Attack

Attack assumes that the attacker manages to skip a doubling operation, which can be seen as a random error at the bit level.

Algorithm 2 Double-and-add

Input: G, $k = (k_{\ell-1}, \ldots, k_0)_2$
Output: $Q = [k]G$

1. $R_0 \leftarrow O$; $R_1 \leftarrow G$
2. for $i = \ell - 1$ down to 0 do
3. \hspace{1em} $R_0 \leftarrow [2]R_0$
4. \hspace{1em} if $k_i = 1$ then $R_0 \leftarrow R_0 + R_1$
5. return R_0
Application to ECDSA

- doubling skipped at iteration j
- $T \rightsquigarrow \hat{T}$ where

$$\hat{T} = \sum_{i=j+1}^{\ell-1} [k_i 2^{i-1}]G + \sum_{i=0}^{j} [k_i 2^i]G$$

$$= \left[\frac{1}{2}\right] (T + [\tilde{k}]G)$$

with $\tilde{k} = (k_j, \ldots, k_0)_2$
- $(r, s) \rightsquigarrow (\hat{r}, \hat{s})$

Algorithm 3 Double-and-add

Input: G, $k = (k_{\ell-1}, \ldots, k_0)_2$

Output: $T = [k]G$

1. $R_0 \leftarrow O$; $R_1 \leftarrow G$
2. for $i = \ell - 1$ down to 0 do
3. $R_0 \leftarrow [2]R_0$
4. if $k_i = 1$ then $R_0 \leftarrow R_0 + R_1$
5. return R_0

Observation:

$$[\hat{u}_1]G + [\hat{u}_2]Y = \left[\frac{H(m)}{5}\right]G + [\hat{r}]Y = \left[\frac{H(m) + d\hat{r}}{5}\right]G = [k]G$$

$$\hat{r} \equiv x\left(\left[\frac{1}{2}\right] (T + [\tilde{k}]G)\right) \pmod{n} \quad \text{with} \quad T = [\hat{u}_1]G + [\hat{u}_2]Y \Rightarrow \tilde{k} = \ldots$$
Application to ECDSA

- doubling skipped at iteration j
- $T \leadsto \hat{T}$ where

$$
\hat{T} = \sum_{i=j+1}^{\ell-1} [k_i 2^{i-1}]G + \sum_{i=0}^{j} [k_i 2^i]G
$$

with $\tilde{k} = (k_j, \ldots, k_0)_2$
- $(r, s) \leadsto (\hat{r}, \hat{s})$

Algorithm 4 Double-and-add

Input: $G, k = (k_{\ell-1}, \ldots, k_0)_2$
Output: $T = [k]G$

1. $R_0 \leftarrow O; R_1 \leftarrow G$
2. for $i = \ell - 1$ down to 0 do
3. \hspace{1em} $R_0 \leftarrow [2]R_0$
4. \hspace{1em} if $k_i = 1$ then $R_0 \leftarrow R_0 + R_1$
5. \hspace{1em} return R_0

Observation:

$$
[\hat{u}_1]G + [\hat{u}_2]Y =\left[\frac{H(m)}{\hat{s}}\right]G + [\hat{r}]Y = \left[\frac{H(m) + dr\hat{r}}{\hat{s}}\right]G = [k]G
$$

$$\hat{r} \equiv x\left([\frac{1}{2}](T + [\tilde{k}]G)\right) \pmod{n} \quad \text{with} \quad T = [\hat{u}_1]G + [\hat{u}_2]Y \quad \implies \quad \tilde{k} = \ldots$$
Application to ECDSA

- doubling skipped at iteration j
- $T \rightarrow \hat{T}$ where

\[
\hat{T} = \sum_{i=j+1}^{\ell-1} [k_i 2^{i-1}]G + \sum_{i=0}^{j} [k_i 2^i]G
\]

with $\tilde{k} = (k_j, \ldots, k_0)_2$
- $(r, s) \rightarrow (\hat{r}, \hat{s})$

Algorithm 5 Double-and-add

Input: G, $k = (k_{\ell-1}, \ldots, k_0)_2$
Output: $T = [k]G$

1: $R_0 \leftarrow O; R_1 \leftarrow G$
2: for $i = \ell - 1$ down to 0 do
3: \hspace{1em} $R_0 \leftarrow [2]R_0$
4: \hspace{1em} if $k_i = 1$ then $R_0 \leftarrow R_0 + R_1$
5: \hspace{1em} return R_0

Observation:

\[
\begin{align*}
[\hat{u}_1]G + [\hat{u}_2]Y &= \left[\frac{H(m)}{s}\right]G + \left[\frac{\hat{r}}{s}\right]Y \\
&= \left[\frac{H(m)+d\hat{r}}{s}\right]G = [k]G
\end{align*}
\]

$\hat{r} \equiv x\left(\left[\frac{1}{2}\right](T + [\tilde{k}]G)\right) \pmod{n}$ with $T = [\hat{u}_1]G + [\hat{u}_2]Y \implies \tilde{k} = \ldots$
Outline

1. Elliptic Curves
 - Basics on elliptic curves
 - Elliptic curve digital signature algorithm
 - Other algorithms

2. Attacks
 - Single-bit errors
 - Safe errors
 - Random errors
 - Skipping attacks

3. Countermeasures
 - Basic countermeasures
 - Scalar randomization
 - BOS^+ algorithm
 - New algorithm

4. Conclusion
 - Research problems
Countermeasures

- Algorithmic countermeasures
 - memory checks, randomization, duplication, verification
 - Shamir’s trick (redundancy)
 - [rich] mathematical structure
- Basic vs. concrete systems
- Fixed vs. variable base point
- Infective computation
- BOS+ algorithm
Basic Countermeasures

- Add CRC checks
 - for private and public parameters
- Randomize the computation
 - e.g., \(d \leftarrow d + rn \) with \(n = \text{ord}_E(P) \)
- Compute the operations twice
 - doubles the running time
- Verify the signatures
 - ECDSA verification is slower than signing
- Check that the output point \(Q = [k]P \) is in \(\langle P \rangle \)
 - \(Q \in E \)
 - \([h]Q \neq O \) (only implies of large order)
Basic Countermeasures

- Add CRC checks
 - for private and public parameters
- Randomize the computation
 - e.g., $d \leftarrow d + r n$ with $n = \text{ord}_E(P)$
- Compute the operations twice
 - doubles the running time
- Verify the signatures
 - ECDSA verification is slower than signing
- Check that the output point $Q = [k]P$ is in $\langle P \rangle$
 - $Q \in E$
 - $[h]Q \neq O$ (only implies of large order)
Basic Countermeasures

- Add CRC checks
 - for private and public parameters
- Randomize the computation
 - e.g., $d \leftarrow d + r \cdot n$ with $n = \text{ord}_E(P)$
- Compute the operations twice
 - doubles the running time
- Verify the signatures
 - ECDSA verification is slower than signing
- Check that the output point $Q = [k]P$ is in $\langle P \rangle$
 - $Q \in E$
 - $[h]Q \neq O$ (only implies of large order)
Basic Countermeasures

- Add CRC checks
 - for private and public parameters
- Randomize the computation
 - e.g., $d \leftarrow d + r \cdot n$ with $n = \text{ord}_E(P)$
- Compute the operations twice
 - doubles the running time
- Verify the signatures
 - ECDSA verification is slower than signing
- Check that the output point $Q = [k]P$ is in $\langle P \rangle$
 - $Q \in E$
 - $[h]Q \neq O$ (only implies of large order)
Basic Countermeasures

- Add CRC checks
 - for private and public parameters
- Randomize the computation
 - e.g., \(d \leftarrow d + r n \) with \(n = \text{ord}_E(P) \)
- Compute the operations twice
 - doubles the running time
- Verify the signatures
 - ECDSA verification is slower than signing
- Check that the output point \(Q = [k]P \) is in \(\langle P \rangle \)
 - \(Q \in E \)
 - \([h]Q \neq O \) (only implies of large order)
Multiplier Randomization (1/2)

- Scalar d should be randomized
- $d^* \leftarrow d + r \#E$ may not be a good solution
 - security issue

Example (secp160k1)

$p = 2^{160} - 2^{32} - 538D_{16}$
$\#E = 01 \ 00000000 \ 00000000 \ 0001B8FA \ 16DFAB9A \ CA16B6B3_{16}$

$\Rightarrow d^* = d + r \#E = (r)_2 || d_{\ell-1} \cdots d_{\ell-t} ||$ some bits
Multiplier Randomization (1/2)

- Scalar d should be randomized
- $d^* \leftarrow d + r \#E$ may not be a good solution
 - security issue

Example (secp160k1)

\[
p = 2^{160} - 2^{32} - 538_{16}
\]

[generalized] Mersenne prime

\[
\#E = 01\ 00000000\ 00000000\ 0001B8FA\ 16DFAB9A\ CA16B6B3_{16}
\]

\[
\Rightarrow d^* = d + r \#E = (r)_{2} \parallel d_{\ell-1} \cdots d_{\ell-t} \parallel \text{some bits}
\]
Multiplier Randomization (1/2)

- Scalar d should be randomized
- $d^* \leftarrow d + r \#E$ may not be a good solution
 - security issue

Example (secp160k1)

<table>
<thead>
<tr>
<th>$p = 2^{160} - 2^{32} - 538_{16}$</th>
<th>[generalized] Mersenne prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>$#E = 01\ 00000000\ 00000000\ 0001B8FA\ 16DFAB9A\ CA16B6B3_{16}$</td>
<td></td>
</tr>
</tbody>
</table>

\[\Rightarrow d^* = d + r \#E = (r)_2 \| d_{\ell-1} \cdots d_{\ell-t} \| \text{some bits} \]
Multiplier Randomization (2/2)

- Use splitting methods
 - additive:
 \[[d]P = [d - r]P + [r]P \]
 - multiplicative:
 \[[d]P = [d \cdot r^{-1}]([r]P) \]

```plaintext
Euclidean splitting
Write \( d = \lfloor d/r \rfloor r + (d \mod r) \) for a random \( r \)

\[ [d]P = [d \mod r]P + \lfloor \lfloor d/r \rfloor \rfloor ([r]P) \]
```
Multiplier Randomization (2/2)

- Use **splitting** methods
 - additive:
 \[[d]P = [d - r]P + [r]P\]
 - multiplicative:
 \[[d]P = [d r^{-1}]([r]P)\]

Euclidean splitting

Write \(d = \lfloor d/r \rfloor r + (d \mod r)\) for a random \(r\)

\[\Rightarrow [d]P = [d \mod r]P + \lceil [d/r] \rceil ([r]P)\]
Multiplier Randomization (2/2)

- Use splitting methods
 - additive:
 \[
 \lfloor d \rfloor P = \lfloor d - r \rfloor P + \lfloor r \rfloor P
 \]
 - multiplicative:
 \[
 \lfloor d \rfloor P = \lfloor d r^{-1} \rfloor (\lfloor r \rfloor P)
 \]

Euclidean splitting

Write \(d = \lfloor d/r \rfloor r + (d \mod r) \) for a random \(r \)

\[
\Rightarrow \lfloor d \rfloor P = \lfloor d \mod r \rfloor P + \lfloor \lfloor d/r \rfloor \rfloor (\lfloor r \rfloor P)
\]

Strauss-Shamir double ladder
Multiplier Randomization (2/2)

- Use splitting methods
 - additive:
 \[[d]P = [d - r]P + [r]P \]
 - multiplicative:
 \[[d]P = [d \cdot r^{-1}]([r]P) \]

Euclidean splitting

Write \(d = \lfloor d/r \rfloor r + (d \mod r) \) for a random \(r \)

\[\implies [d]P = [d \mod r]P + [\lfloor d/r \rfloor]([r]P) \]

- Strauss-Shamir double ladder
Multiplier Randomization (2/2)

- Use **splitting** methods
 - additive:
 \[[d]P = [d - r]P + [r]P \]
 - multiplicative:
 \[[d]P = [d r^{-1}]([r]P) \]

Euclidean splitting

Write \(d = \lfloor d/r \rfloor r + (d \mod r) \) for a random \(r \)

\[\implies [d]P = [d \mod r]P + \lfloor [d/r] \rfloor ([r]P) \]

- Strauss-Shamir double ladder
Preventing Fault Attacks: The Case of RSA

Shamir’s countermeasure

1. Choose a (small) random integer \(r \)
2. Compute \(S^* = \hat{m}^d \mod rN \) and \(Z = \hat{m}^d \mod r \)
3. If \(S^* \equiv Z \pmod{r} \) then output \(S = S^* \mod N \), otherwise return error

Giraud’s countermeasure

1. Compute \(\hat{m}^d \mod N \) using Montgomery ladder and obtain the pair \((Z, S) = (\hat{m}^{d-1} \mod N, \hat{m}^d \mod N)\)
2. If \(Z \hat{m} \equiv S \pmod{N} \) then output \(S \), otherwise return error
Preventing Fault Attacks: The Case of RSA

Shamir’s countermeasure

1. Choose a (small) random integer \(r \)
2. Compute \(S^* = \hat{m}^d \mod rN \) and \(Z = \hat{m}^d \mod r \)
3. If \(S^* \equiv Z \pmod{r} \) then output \(S = S^* \mod N \), otherwise return error

Giraud’s countermeasure

1. Compute \(\hat{m}^d \mod N \) using Montgomery ladder and obtain the pair \((Z, S) = (\hat{m}^{d-1} \mod N, \hat{m}^d \mod N)\)
2. If \(Z \hat{m} \equiv S \pmod{N} \) then output \(S \), otherwise return error
Infective Computation

- Reminder:
 - Decisional tests should be avoided
 - Inducing a random fault in the status register flips the value of the zero flag bit with a probability of 50%

Infective computation

Make the decisional tests implicit and “infect” the computation in case of error detection

Example:

If \(T[a] = b \) then return a else error

\[\Rightarrow \text{Return} \ (T[a] - b) \cdot r + a \]
Infective Computation

■ Reminder:
 ■ Decisional tests should be avoided
 ■ Inducing a random fault in the status register flips the value of the zero flag bit with a probability of 50%

Infective computation

Make the decisional tests implicit and “infect” the computation in case of error detection

Example:

\[\text{If } (T[a] = b) \text{ then return } a \text{ else error} \]
\[\Rightarrow \text{Return } (T[a] - b) \cdot r + a \]
Infective Computation

Reminder:

- Decisional tests should be avoided
- Inducing a random fault in the status register flips the value of the zero flag bit with a probability of 50%

Infective computation

Make the decisional tests implicit and “infect” the computation in case of error detection

Example:

\[\text{If } (T[a] = b) \text{ then return } a \text{ else error} \]
\[\Rightarrow \text{Return } (T[a] - b) \cdot r + a \]
Edwards Curves

\[E_{/\mathbb{F}_p} : ax^2 + y^2 = 1 + bx^2y^2 \quad \text{where } ab(a - b) \neq 0 \]

- **Addition law**
 - \(O = (0, 1) \) [neutral element]
 - \(- (x_1, y_1) = (-x_1, y_1)\)
 - \((x_1, y_1) + (x_2, y_2) = (x_3, y_3) \) where
 \[
 x_3 = \frac{x_1y_2 + x_2y_1}{1 + bx_1x_2y_1y_2}, \quad y_3 = \frac{y_1y_2 - ax_1x_2}{1 - bx_1x_2y_1y_2}
 \]
 - \ldots also valid for point doubling (and \(O \))

- Addition law is **complete** if \(a \) is a square and \(b \) is a non-square
Shamir’s Trick for Elliptic Curve Cryptosystems

Let $\mathcal{R} = \mathbb{Z}/pr\mathbb{Z}$ for a (small) random prime r

1. Compute

 - $Q^* \leftarrow [d]P \in \mathcal{E}_{pr}(\mathbb{Z}/pr\mathbb{Z})$
 - $Y \leftarrow [d]P \in \mathcal{E}(\mathbb{F}_r)$

2. If $(Q^* \not\equiv Y \pmod{r})$ then return error

3. Return $Q^* \pmod{p}$
Shamir’s Trick for Elliptic Curve Cryptosystems

\[P = (x_1, y_1) \in \mathcal{E}/\mathbb{F}_p : ax^2 + y^2 = 1 + bx^2y^2 \]

- Let \(\mathcal{R} = \mathbb{Z}/pr\mathbb{Z} \) for a (small) random prime \(r \)

 1. Compute
 - \(\mathcal{E}_{pr} \leftarrow \text{CRT}(\mathcal{E}, \mathcal{E}_r) \) where \(\mathcal{E}_{r/\mathbb{F}_r} : ax^2 + y^2 = 1 + brx^2y^2 \)
 - \(Q^* \leftarrow [d]P \in \mathcal{E}_{pr}(\mathbb{Z}/pr\mathbb{Z}) \)
 - \(Y \leftarrow [d]P_r \in \mathcal{E}_r(\mathbb{F}_r) \)

 2. If \((Q^* \neq Y \mod r) \) then return error

 3. Return \(Q^* \mod p \)

Idea #1

Let \(b_r = (ax_1^2 + y_1^2 - 1)/(x_1^2y_1^2) \mod r \) so that \(P_r := P \mod r \in \mathcal{E}_r \)

- ... but completeness is not guaranteed (and \(\#\mathcal{E}_r \) is unknown)
Shamir’s Trick for Elliptic Curve Cryptosystems

$P = (x_1, y_1) \in \mathcal{E}_{/\mathbb{F}_p} : ax^2 + y^2 = 1 + bx^2y^2$

- Let $\mathcal{R} = \mathbb{Z}/pr\mathbb{Z}$ for a (small) random prime r
 1. Compute
 - $\mathcal{E}_{pr} \leftarrow \text{CRT}(\mathcal{E}, \mathcal{E}_r)$ and $P^* \leftarrow \text{CRT}(P, P_r)$
 - $Q^* \leftarrow [d]P^* \in \mathcal{E}_{pr}(\mathbb{Z}/pr\mathbb{Z})$
 - $Y \leftarrow [d \mod nr]P_r \in \mathcal{E}_r(\mathbb{F}_r)$
 2. If $(Q^* \not\equiv Y \mod r)$ then return error
 3. Return $Q^* \mod p$

Idea #2

Fix $E_r(\mathbb{F}_r) = \langle P_r \rangle$ so that addition is complete

- ... but r is now a priori fixed and values must be pre-stored
BOS⁺ Algorithm

- Blömer, Otto, and Seifert (FDTC 2005)

Input: \(P \in \mathcal{E}, d \)
Output: \(Q = [d]P \)
In memory: \(\{\mathcal{E}_r, P_r \in \mathcal{E}_r, n_r = \#\mathcal{E}_r\} \)

1. Compute
 1. \(\mathcal{E}_{pr} \leftarrow \text{CRT}(\mathcal{E}, \mathcal{E}_r) \) and \(P^* \leftarrow \text{CRT}(P, P_r) \)
 2. \(Q^* \leftarrow [d]P^* \in \mathcal{E}_{pr} \)
 3. \(Y \leftarrow [d \pmod{n_r}]P_r \in \mathcal{E}_r \)

 \[
 \begin{align*}
 c_x &\leftarrow 1 + x_{pr} - x_r \pmod{r} \\
 c_y &\leftarrow 1 + y_{pr} - y_r \pmod{r}
 \end{align*}
 \]

2. If \(Q^* \not\equiv Y \pmod{r} \) then return error
3. Return \(Q^* \pmod{p} \in \mathcal{E} \)
BOS⁺ Algorithm

Blömer, Otto, and Seifert (FDTC 2005)

Input: \(P \in \mathcal{E}, d \)

Output: \(Q = [d]P \)

In memory: \(\{\mathcal{E}_r, P_r \in \mathcal{E}_r, n_r = \#\mathcal{E}_r\} \)

1. **Compute**
 1. \(\mathcal{E}_{pr} \leftarrow \text{CRT}(\mathcal{E}, \mathcal{E}_r) \) and \(P^* \leftarrow \text{CRT}(P, P_r) \)
 2. \(Q^* \leftarrow [d]P^* \in \mathcal{E}_{pr} = (x_{pr}, y_{pr}) \)
 3. \(Y \leftarrow [d \pmod{n_r}]P_r \in \mathcal{E} = (x_r, y_r) \)
 4. \[c_x \leftarrow 1 + x_{pr} - x_r \pmod{r} \]
 \[c_y \leftarrow 1 + y_{pr} - y_r \pmod{r} \]

2. For a \(\kappa \)-bit random \(\rho \), compute \(\gamma \leftarrow \left\lfloor \frac{\rho c_x + (2^\kappa - \rho)c_y}{2^\kappa} \right\rfloor \)

3. Return \(Q = [\gamma]Q^* \pmod{p} \in \mathcal{E} \)
Shamir’s Trick for Elliptic Curve Cryptosystems ?!

\[P = (x_1, y_1) \in \mathcal{E}/\mathbb{F}_p : ax^2 + y^2 = 1 + bx^2y^2 \]

1. Let \(R = \mathbb{Z}/pr\mathbb{Z} \) for a (small) random prime \(r \)
2. Compute
 - \(\mathcal{E}_{pr} \leftarrow \text{CRT}(\mathcal{E}, \mathcal{E}_r) \) and \(P^* \leftarrow \text{CRT}(P, P_r) \)
 - \(Q^* \leftarrow [d]P^* \in \mathcal{E}_{pr}(\mathbb{Z}/pr\mathbb{Z}) \)
 - \(Y \leftarrow [d \text{ (mod } n_r)]P_r \in \mathcal{E}_r(\mathbb{Z}/r\mathbb{Z}) \)
3. If \(Q^* \not\equiv Y \text{ (mod } r) \) then return error
4. Return \(Q^* \mod p \)

Idea #3 (???)

Choose \(\mathcal{E}_r(\mathbb{Z}/r\mathbb{Z}) = \langle P_r \rangle \), so that (i) addition is complete, (ii) \(n_r = \#\mathcal{E}_r \) is known, and (iii) no storage is required
New Algorithm

\[\mathcal{E}_1(\mathbb{Z}/q^2\mathbb{Z}) = \{(\alpha q, 1) \mid \alpha \in \mathbb{Z}/q\mathbb{Z}\} \]

- Properties
 - \(\mathcal{E}_1 \simeq (\mathbb{Z}/q\mathbb{Z})^+, \ P_1 = (\alpha q, 1) \sim \alpha \)
 - \(\# \mathcal{E}_1 = q \)
 - \([d]P_1 = (dx_1, 1)\) where \(x_1 = \alpha q \)

- Addition law is complete

\[
(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1 y_2 + x_2 y_1}{1 + bx_1 x_2 y_1 y_2}, \frac{y_1 y_2 - ax_1 x_2}{1 - bx_1 x_2 y_1 y_2} \right)
\]

whatever curve parameters \(a \) and \(b \)
New Algorithm

Input: \(P \in \mathcal{E}, d \)
Output: \(Q = [d]P \)

1. Choose a small random \(t \)
2. Define \(r \leftarrow t^2 \) and \(P_r \leftarrow (t, 1) \)
3. Compute
 - \(P^* \leftarrow \text{CRT}(P, P_r) \)
 - \(Q^* \leftarrow [d]P^* \in \mathcal{E}(\mathbb{Z}/pr\mathbb{Z}) \)
 - \(Y \leftarrow (dt \mod r, 1) \)
 - \[\begin{align*}
 c_x &\leftarrow 1 + x_{pr} - x_r \pmod{r} \\
 c_y &\leftarrow y_{pr} \pmod{r}
 \end{align*} \]
4. If \(Q^* \not\equiv Y \pmod{r} \) then return error
5. Return \(Q^* \pmod{p} \in \mathcal{E}(\mathbb{F}_p) \)
New Algorithm

Input: \(P \in \mathcal{E}, d \)
Output: \(Q = [d]P \)

1. Choose a small random \(t \)
2. Define \(r \leftarrow t^2 \) and \(P_r \leftarrow (t, 1) \)
3. Compute

 \[P^* \leftarrow \text{CRT}(P, P_r) \]
 \[Q^* \leftarrow [d]P^* \in \mathcal{E}(\mathbb{Z}/pr\mathbb{Z}) \]
 \[Y \leftarrow (dt \mod r, 1) \]
 \[\begin{cases}
 c_x \leftarrow 1 + x_{pr} - x_r \pmod{r} \\
 c_y \leftarrow y_{pr} \pmod{r}
 \end{cases} \]
4. For a \(\kappa \)-bit random \(\rho \), compute \(\gamma \leftarrow \left\lfloor \frac{\rho c_x + (2^\kappa - \rho)c_y}{2^\kappa} \right\rfloor \)
5. Return \(Q = [\gamma]Q^* \pmod{p} \in \mathcal{E}(\mathbb{F}_p) \)
Outline

1. Elliptic Curves
 - Basics on elliptic curves
 - Elliptic curve digital signature algorithm
 - Other algorithms

2. Attacks
 - Single-bit errors
 - Safe errors
 - Random errors
 - Skipping attacks

3. Countermeasures
 - Basic countermeasures
 - Scalar randomization
 - BOS$^+$ algorithm
 - New algorithm

4. Conclusion
 - Research problems
Summary

- Always use ECC standards (ECDSA, ECIES, ECMQV)
- Protect private and public parameters
 - perform memory checks
- Protect public routines
- Avoid decisional tests and make use of infective computation
- Randomize the implementation
- Prefer the splitting methods
Summary

- Always use ECC standards (ECDSA, ECIES, ECMQV)
- Protect private and public parameters
 - perform memory checks
- Protect public routines
- Avoid decisional tests and make use of infective computation
- Randomize the implementation
- Prefer the splitting methods
Summary

- Always use ECC standards (ECDSA, ECIES, ECMQV)
- Protect private and public parameters
 - perform memory checks
- Protect public routines
 - Avoid decisional tests and make use of infective computation
 - Randomize the implementation
 - Prefer the splitting methods
Summary

- Always use ECC standards (ECDSA, ECIES, ECMQV)
- Protect private and public parameters
 - perform memory checks
- Protect public routines
- Avoid decisional tests and make use of infective computation
 - Randomize the implementation
 - Prefer the splitting methods
Summary

- Always use ECC standards (ECDSA, ECIES, ECMQV)
- Protect private and public parameters
 - perform memory checks
- Protect public routines
- Avoid decisional tests and make use of infective computation
- Randomize the implementation
- Prefer the splitting methods
Summary

- Always use ECC standards (ECDSA, ECIES, ECMQV)
- Protect private and public parameters
 - perform memory checks
- Protect public routines
- Avoid decisional tests and make use of infective computation
- Randomize the implementation
- Prefer the splitting methods
Further Research: Attacks
Further Research: Attacks

Research Problem #1

Mount fault attacks against randomized implementations of the EC primitive (e.g., using LLL)

Research Problem #2

Mount practical fault-attacks against elliptic curve schemes (i.e., beyond the primitive)

Research Problem #3

Combine classical attacks with fault attacks (i.e., exploit the extra info provided by the faults)
Further Research: Attacks

Research Problem #1

Mount fault attacks against randomized implementations of the EC primitive (e.g., using LLL)

Research Problem #2

Mount practical fault-attacks against elliptic curve schemes (i.e., beyond the primitive)

Research Problem #3

Combine classical attacks with fault attacks (i.e., exploit the extra info provided by the faults)
Further Research: Attacks

Research Problem #1
Mount fault attacks against randomized implementations of the EC primitive (e.g., using LLL)

Research Problem #2
Mount practical fault-attacks against elliptic curve schemes (i.e., beyond the primitive)

Research Problem #3
Combine classical attacks with fault attacks (i.e., exploit the extra info provided by the faults)
Further Research: Designs
Further Research: Designs

Research Problem #1

💡 Improve the **efficiency** of computations (speed-wise or memory-wise) and **security** — exploit the rich mathematical structure behind elliptic curves

Research Problem #2

💡 Explore scalar multiplication algorithms or design new ones having **invariants** (as in Giraud’s proposal)

Research Problem #3

💡 Develop countermeasures against **combined attacks** in an efficient way
Further Research: Designs

Research Problem #1

矿泉水 Improve the efficiency of computations (speed-wise or memory-wise) and security — exploit the rich mathematical structure behind elliptic curves

Research Problem #2

矿泉水矿泉水 Explore scalar multiplication algorithms or design new ones having invariants (as in Giraud’s proposal)

Research Problem #3

矿泉水矿泉水 Develop countermeasures against combined attacks in an efficient way
Further Research: Designs

Research Problem #1

🔥 Improve the **efficiency** of computations (speed-wise or memory-wise) and **security** — exploit the rich mathematical structure behind elliptic curves

Research Problem #2

🔥🔥 Explore scalar multiplication algorithms or design new ones having **invariants** (as in Giraud’s proposal)

Research Problem #3

🔥 Develop countermeasures against **combined attacks** in an efficient way
Comments/Questions?