Fault Sensitivity Analysis Against Elliptic Curve Cryptosystems

The University of Electro-Communications:
Hikaru Sakamoto, Yang Li, Kazuo Ohta, and Kazuo Sakiyama

FDTC2011 Nara Japan 2011/09/28
Contents

- Introduction
 - Fault Sensitivity Analysis
 - Fault injection technique
 - Montgomery Powering Ladder
- Proposed attack
- Experiments and results
- Difference between FSA and DPA
- Conclusion and future work
Introduction

Propose attack using Fault Sensitivity Analysis (FSA) against public key (PK) implementation

<table>
<thead>
<tr>
<th></th>
<th>Previous FA</th>
<th>FSA</th>
<th>In Previous FA, use the value of the faulty output</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>✔️ [BA97]</td>
<td>✔️ [LSG+10]</td>
<td>In FSA, do not use the value of the faulty output</td>
</tr>
<tr>
<td>PK (ECC)</td>
<td>✔️ [BMM00]</td>
<td>New</td>
<td></td>
</tr>
</tbody>
</table>

Contribution

- Successful attack against PK using FSA for the first time
- In case study, we attack against ECC in LSI on SASEBO-R
Fault Sensitivity Analysis (FSA)

Fault injection (Fault intensity is F)

Input \rightarrow Device \rightarrow Correct output

- F is low
- F is high

The borderline of F which can induce fault (Fault sensitivity (FS) information)

Identify the secret key

Depends on input value

Input \rightarrow Device \rightarrow Faulty output
Fault injection technique

By supplying an illegal clock, the setup time violation is induced to devices.

Illegal clock

Period: \(T \) \(\rightarrow \) \(T' \) (\(< T\))

Clock frequency is high \(\rightarrow \) Fault intensity \((F)\) is high

Clock frequency is low \(\rightarrow \) Fault intensity \((F)\) is low
Montgomery Powering Ladder (MPL)

- MPL is one of the scalar multiplication algorithm
- Point addition and doubling are performed in calculating 1 bit
 - Dummy operations do not exist in MPL

(Ex) Input: \(P, d = 19 = (10011)_2 \)
Output: \(Q(=19P) \)

\[
\begin{array}{cccccc}
 d_i & 1 & 0 & 0 & 1 & 1 \\
 P_1 & P & 2P & 4P & 9P & 19P \\
 \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 P_2 & 2P & 3P & 5P & 10P & 20P \\
\end{array}
\]

Result of MPL

Initial doubling Point doubling Point addition
Main idea of our attack

In FSA,

FS is specific information on input of calculations

Input: \(P \) → calculation → \(FS_P \)

Input: \(2P \) → calculation → \(FS_{2P} \)

Input: \(a \) → calculation → \(FS_a \)

Input: \(b \) → calculation → \(FS_b \)
Main idea of our attack (cont.)

In point doubling of MPL,

\[d_i = 0 : \quad 2 \times P_1 \]
\[d_i = 1 : \quad 2 \times P_2 \]
Template and Attack procedure

\[
\begin{array}{c|cc}
\mathbf{d}_i & 1 & 0 \\
\mathbf{P}_1 & \mathbf{P} & 2\mathbf{P} \\
\mathbf{P}_2 & 2\mathbf{P} & 3\mathbf{P}
\end{array}
\]

Initial Doubling: \(2 \times \mathbf{P} = 2\mathbf{P} \)

Template

Point doubling performed for the first time (Initial doubling)

\[\mathbf{d}_i \] is a template to detect the secret key.

\[\mathbf{P}_1, \mathbf{P}_2 \] are points used in the attack.

\[\mathbf{P} \] is the point doubling target.

\[2\mathbf{P} \] is the result of point doubling.

\[3\mathbf{P} \] is the result of point doubling the previous result.

\[0 \] indicates no point doubling was performed for this entry.

\[1 \] indicates point doubling was performed for this entry.

Attack procedure

- Make template
- Measure attack target of point doubling
- Calculate correlation of the point doubling and the template

A key corresponding to template where correlation is larger is correct secret key.
How to make template

ex) Template $2P \rightarrow 4P$

1. Input $2P$ to device
 - Input: $2P \rightarrow$ Device

2. The device performs initial doubling
 - $P_1 \quad P \quad P_2 \rightarrow 2P$

3. Measure fault sensitivity (FS) information
 - Measure \rightarrow FS information
How to identify the key bit (2nd MSB)

(1) Guess the value of d_2

\begin{align*}
\text{① } d_2 &= 0 : \quad P \rightarrow 2P \\
\text{② } d_2 &= 1 : \quad 2P \rightarrow 4P
\end{align*}

(2) Make templates

- Initial doubling
- Measure

(3) Measure performed point doubling

\begin{align*}
&\begin{array}{c|c}
 d_i & 1 \quad d_2 \\
 P_1 & P \\
 P_2 & 2P \\
\end{array} \\
&M\text{easure}
\end{align*}

(4) Identify the value of d_2

\begin{align*}
&M\text{easurement data} = Template \ ① \\
&\begin{array}{c}
 d_2 \\
\end{array} = 0 \\
&M\text{easurement data} = Template \ ② \\
&\begin{array}{c}
 d_2 \\
\end{array} = 1
\end{align*}
How to identify the key bit (3rd MSB)

(1) Guess the value of d_3

① $d_3 = 0 : 2P \rightarrow 4P$
② $d_3 = 1 : 3P \rightarrow 6P$

(2) Make templates

(3) Measure performed point doubling

<table>
<thead>
<tr>
<th>d_i</th>
<th>P</th>
<th>$2P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td>$2P$</td>
<td>$3P$</td>
</tr>
</tbody>
</table>

Measure

(4) Identify the value of d_3

Measurement data $=$ Template ①

$d_3 = 0$

Measurement data $=$ Template ②

$d_3 = 1$
Case study: Attack for ECC implementation in Cryptographic LSI on SASEBO-R

- Using elliptic curve over extended binary field
- Using López-Dahab algorithm [LD99] as scalar multiplication algorithm

SASEBO: Side channel Attack Standard Evaluation BOard
López-Dahab algorithm [LD99]

Point addition and doubling using
X and Z coordinates as projective coordinates

Point doubling by
López-Dahab algorithm

Input: \(P_1 = (X_1, Z_1) \).
Output: \(P_1 = 2P_1 \).

1: \(t_1 = X_1 X_1 \)
2: \(t_2 = Z_1 Z_1 \)
3: \(Z_1 = t_1 t_2 \)
4: \(t_1 = t_1 t_1 \)
5: \(t_2 = t_2 t_2 \)
6: \(t_3 = bt_2 \)
7: \(X_1 = t_3 + t_1 \)
8: return \(P_1 \)

Measure these steps in the attack

It is difficult to induce a fault in modular addition over \(\text{GF}(2^m) \)
for (fault injection position) from (step 1) to (step 6) do
 repeat
 while correct results are generated do
 increase the clock frequency;
 end while
 record the clock frequency;
 until several times
 calculate average of these recorded clock frequencies
end for

Decrease measurement noise
Experimental results (2^{nd} MSB)

$P_1 \quad 1 \quad 0 \text{ or } 1 \quad 2P \quad (2 \times P = 2P)$

Attacker can identify the secret key

Fault injection step

Template with correct guess
Correlation coefficient: 0.9392

Template with wrong guess
Correlation coefficient: 0.3083

FDTC2011 Nara Japan 2011/9/28
Experimental results (3rd MSB)

\[d_i \begin{array}{c} 1 \ 0 \ 0 \quad 0 \quad \text{or} \quad 1 \\ P_1 \begin{array}{c} P \ 2P \
ightarrow \ 4P \\ P_2 \begin{array}{c} 2P \ 3P \
ightarrow \ 6P \end{array} \end{array} \end{array} \]

Point doubling of attack target

\(2 \times 2P = 4P \)

Template with correct guess

Correlation coefficient: 0.9016

Template with wrong guess

Correlation coefficient: 0.3085

By repeating this procedure, the attacker can identify all the key bits.
Attack condition

The attacker must be able to
• Make any templates using initial doubling
 • Input the initial point from the outside
• Guess performed point doubling correctly

Our attack cannot work on the implementation with
• randomized input point
• randomized the secret key
Difference between FSA and DPA

FSA is a new side-channel attack using FS information
We use the FS as the side-channel leakage to identify the secret key

We expect lower measurement noise for the FS-based attack than power-based one
Conclusion and Future work

- **Conclusion**
 - Successful attack for a public key implementation using FSA for the first time
 - Make templates to distinguish point doubling using initial doubling
 - As a case study, we success to attack for ECC implementation in LSI on SASEBO-R

- **Future work**
 - We will study
 - possible attacks on an implementation with randomized input point or secret key
 - further differences between FSA and DPA
Thank you for your attention
References

