(In)security Against Fault Injection Attacks on CRT-RSA Implementations

Alexandre Berzati, Cécile Canovas and Louis Goubin

E-mail: alexandre.berzati@cea.fr
Outline

1 Introduction
 ■ Previous work
 ■ Overview of our attack

2 Attack principle
 ■ Ciet & Joye Countermeasure
 ■ Fault Model
 ■ Faulty Execution
 ■ Fault Analysis

3 Conclusion
Introduction

Description

Fault analysis on a protected CRT-RSA implementation
Introduction

Description
Fault analysis on a protected CRT-RSA implementation

Motivation
Highlighting that protecting CRT-RSA against DFA is a challenging problem
Outline

1 Introduction
 - Previous work
 - Overview of our attack

2 Attack principle
 - Ciet & Joye Countermeasure
 - Fault Model
 - Faulty Execution
 - Fault Analysis

3 Conclusion

(In)security Against Fault Injection Attacks on CRT-RSA Implementations - Alexandre Berzati
Previous work

- DFA on CRT-RSA
Previous work

- **DFA on CRT-RSA**
 - *On the Importance of Checking Cryptographic Protocols for Faults* (BDL97), EUROCRYPT’97
Previous work

- **DFA on CRT-RSA**
 - *On the Importance of Checking Cryptographic Protocols for Faults* (BDL97), EUROCRYPT’97

- *Fault Attack on RSA with CRT: Concrete Results and Practical Countermeasures* (ABF+02), CHES 2002
Previous work

- **DFA on CRT-RSA**
 - *On the Importance of Checking Cryptographic Protocols for Faults* (BDL97), EUROCRYPT’97
 - *Fault Attack on RSA with CRT: Concrete Results and Practical Countermeasures* (ABF+02), CHES 2002
 - *Cryptanalysis of a Provably Secure CRT-RSA Algorithm* (Wag04), ACM-CCS 2004
Previous work

- **DFA on CRT-RSA**
 - *On the Importance of Checking Cryptographic Protocols for Faults* (BDL97), EUROCRYPT’97
 - *Fault Attack on RSA with CRT: Concrete Results and Practical Countermeasures* (ABF+02), CHES 2002
 - *Cryptanalysis of a Provably Secure CRT-RSA Algorithm* (Wag04), ACM-CCS 2004

- **Methods for protecting CRT-RSA**
 - Shamir’s trick: *Improved Method and Apparatus for Protecting Public Key Schemes from Timing and Fault Attacks* (Sha97), Rump Session of Eurocrypt’97
 - Infective Computation: *RSA Speedup with Residue Number System Immune Against Hardware Fault Cryptanalysis* (YKLM01), ISISC 2001
 - BOS Scheme: *A New CRT-RSA Algorithm Secure Against Bellcore Attack* (BOS03), ACM-CCS 2003
Previous work

- **DFA on CRT-RSA**
 - *On the Importance of Checking Cryptographic Protocols for Faults* (BDL97), EUROCRYPT’97
 - *Fault Attack on RSA with CRT: Concrete Results and Practical Countermeasures* (ABF+02), CHES 2002
 - *Cryptanalysis of a Provably Secure CRT-RSA Algorithm* (Wag04), ACM-CCS 2004

- **Methods for protecting CRT-RSA**
 - **Shamir’s trick**: *Improved Method and Apparatus for Protecting Public Key Schemes from Timing and Fault Attacks* (Sha97), Rump Session of Eurocrypt’97
Previous work

■ DFA on CRT-RSA
 • *On the Importance of Checking Cryptographic Protocols for Faults* (BDL97), EUROCRYPT’97

 • *Fault Attack on RSA with CRT: Concrete Results and Practical Countermeasures* (ABF+02), CHES 2002

 • *Cryptanalysis of a Provably Secure CRT-RSA Algorithm* (Wag04), ACM-CCS 2004

■ Methods for protecting CRT-RSA
 • **Shamir’s trick**: *Improved Method and Apparatus for Protecting Public Key Schemes from Timing and Fault Attacks* (Sha97), Rump Session of Eurocrypt’97

 • **Infective Computation**: *RSA Speedup with Residue Number System Immune Against Hardware Fault Cryptanalysis* (YKLM01), ISISC 2001
Previous work

- **DFA on CRT-RSA**
 - *On the Importance of Checking Cryptographic Protocols for Faults* (BDL97), EUROCRYPT’97
 - *Fault Attack on RSA with CRT: Concrete Results and Practical Countermeasures* (ABF+02), CHES 2002
 - *Cryptanalysis of a Provably Secure CRT-RSA Algorithm* (Wag04), ACM-CCS 2004

- **Methods for protecting CRT-RSA**
 - **Shamir’s trick**: *Improved Method and Apparatus for Protecting Public Key Schemes from Timing and Fault Attacks* (Sha97), Rump Session of Eurocrypt’97
 - **Infective Computation**: *RSA Speedup with Residue Number System Immune Against Hardware Fault Cryptanalysis* (YKLM01), ISISC 2001
 - **BOS Scheme**: *A New CRT-RSA Algorithm Secure Against Bellcore Attack* (BOS03), ACM-CCS 2003
Outline

1 Introduction
 ■ Previous work
 ■ Overview of our attack

2 Attack principle
 ■ Ciet & Joye Countermeasure
 ■ Fault Model
 ■ Faulty Execution
 ■ Fault Analysis

3 Conclusion
Overview of our attack

- Our attack applies on a protected CRT-RSA implementation.
Overview of our attack

- Our attack applies on a protected CRT-RSA implementation

- Provides a full secret key recovery by factorizing the public modulus N
Overview of our attack

- Our attack applies on a protected CRT-RSA implementation

- Provides a full secret key recovery by factorizing the public modulus N

- Can be applied on CRT-RSA functions that handles the secret key d:
 - Signature (with deterministic padding)
 - Decryption
Overview of our attack

- Our attack applies on a protected CRT-RSA implementation

- Provides a full secret key recovery by factorizing the public modulus N

- Can be applied on CRT-RSA functions that handles the secret key d:
 - Signature (with deterministic padding)
 - Decryption

- Based on a simple and practicable fault model
Outline

1 Introduction
 - Previous work
 - Overview of our attack

2 Attack principle
 - Ciet & Joye Countermeasure
 - Fault Model
 - Faulty Execution
 - Fault Analysis

3 Conclusion
CRT-RSA Countermeasure

Ciet & Joye Algorithm — *Practical Fault Countermeasures for Chinese Remaindering Based RSA (JC05), FDTC 2005*

Input: \(\hat{m}, \{p, q, d_p, d_q\} \)

Output: \(S = \hat{m}^d \mod N \)

Parameters: \(\kappa, l \)

1. For two \(\kappa \)-bit random integers \(r_1 \) and \(r_2 \)
 - (a) \(p^* = r_1 \cdot p \)
 - (b) \(q^* = r_2 \cdot q \)
 - (c) \(i_{q^*} = (q^*)^{-1} \mod p^* \)
 - (d) \(N = p \cdot q \).

2. Compute
 - (a) \(S_{p^*} \equiv \hat{m}^d p \mod p^* \) and \(s_2 \equiv \hat{m}^d q \mod \varphi(r_2) \mod r_2 \),
 - (b) \(S_{q^*} \equiv \hat{m}^d q \mod q^* \) and \(s_1 \equiv \hat{m}^d p \mod \varphi(r_1) \mod r_1 \).

3. Compute \(S^* \equiv S_{q^*} + q^* \cdot i_{q^*} \cdot (S_{p^*} - S_{q^*}) \mod p^* \)

4. Compute
 - (a) \(c_1 \equiv (S^* - s_1 + 1) \mod r_1 \)
 - (b) \(c_2 \equiv (S^* - s_2 + 1) \mod r_2 \)

5. For a \(l \)-bit integer \(r_3 \), set \(\gamma = \left\lfloor \frac{r_3 \cdot c_1 + (2^l - r_3) \cdot c_2}{2^l} \right\rfloor \)

6. Return \(S \equiv (S^*)^\gamma \mod N \)
Outline

1. Introduction
 - Previous work
 - Overview of our attack

2. Attack principle
 - Ciet & Joye Countermeasure
 - Fault Model
 - Faulty Execution
 - Fault Analysis

3. Conclusion
Fault model

- Perturbation of the CRT-RSA signature
 - Transient byte fault on S_p^*
Fault model

- Perturbation of the CRT-RSA signature
 - Transient byte fault on S_p^*

- The faulty result \hat{S}_p^* can be model as:

$$\hat{S}_p^* = S_p^* \oplus \epsilon$$

where $\epsilon = R_8 \cdot 2^{8i}$, R_8 is a random byte value and $i \in [0; \frac{(n/2)+\kappa}{8} - 1]$
Fault model

- Perturbation of the CRT-RSA signature
 - Transient byte fault on S_p^*

- The faulty result \hat{S}_p^* can be model as:

$$\hat{S}_p^* = S_p^* \oplus \varepsilon$$

where $\varepsilon = R_8 \cdot 2^{8i}$, R_8 is a random byte value and $i \in [0; \left(\frac{n}{2}\right)+\kappa - 1]$

- Then, the fault spreads over the computation:
 - During the CRT Recombination
 - Computation of the check values and gamma
 - Final signature
Outline

1 Introduction
 - Previous work
 - Overview of our attack

2 Attack principle
 - Ciet & Joye Countermeasure
 - Fault Model
 - Faulty Execution
 - Fault Analysis

3 Conclusion
Faulty Execution

Ciet & Joye Algorithm

<table>
<thead>
<tr>
<th>Input:</th>
<th>(\dot{m}, {p, q, d_p, d_q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output:</td>
<td>(S = \dot{m}^d \mod N)</td>
</tr>
<tr>
<td>Parameters:</td>
<td>(\kappa, l)</td>
</tr>
</tbody>
</table>

1. For two \(\kappa\)-bit random integers \(r_1\) and \(r_2\)
 (a) \(p^* = r_1 \cdot p\),
 (b) \(q^* = r_2 \cdot q\),
 (c) \(i_{q^*} = (q^*)^{-1} \mod p^*\),
 (d) \(N = p \cdot q\).
2. Compute
 (a) \(S_{p^*} \equiv \dot{m}^{d_p} \mod p^*\) and \(s_2 \equiv \dot{m}^{d_q} \mod \varphi(r_2) \mod r_2\),
 (b) \(S_{q^*} \equiv \dot{m}^{d_q} \mod q^*\) and \(s_1 \equiv \dot{m}^{d_p} \mod \varphi(r_1) \mod r_1\).
3. Compute \(S^* \equiv S_{q^*} + q^* \cdot i_{q^*} \cdot (S_{p^*} - S_{q^*}) \mod p^*\)
4. Compute
 (a) \(c_1 \equiv (S^* - s_1 + 1) \mod r_1\)
 (b) \(c_2 \equiv (S^* - s_2 + 1) \mod r_2\)
5. For a \(l\)-bit integer \(r_3\), set \(\gamma = \left\lfloor \frac{(r_3 \cdot c_1 + (2^l - r_3) \cdot c_2)}{2^l} \right\rfloor\)
6. Return \(S \equiv (S^*)^\gamma \mod N\)
Faulty Execution

Ciet & Joye Algorithm

Input: $\dot{m}, \{p, q, d_p, d_q\}$
Output: $S = \dot{m}^d \mod N$
Parameters: κ, l

1. For two κ-bit random integers r_1 and r_2
 (a) $p^* = r_1 \cdot p$,
 (b) $q^* = r_2 \cdot q$,
 (c) $i_{q^*} = (q^*)^{-1} \mod p^*$,
 (d) $N = p \cdot q$.

2. Compute
 (a) $S_{p^*} \equiv \dot{m}^{dp} \mod p^*$ and $s_2 \equiv \dot{m}^{d_q} \mod \varphi(r_2) \mod r_2$,
 (b) $S_{q^*} \equiv \dot{m}^{dq} \mod q^*$ and $s_1 \equiv \dot{m}^{dp} \mod \varphi(r_1) \mod r_1$.

3. Compute $S^* \equiv S_{q^*} + q^* \cdot i_{q^*} \cdot (S_{p^*} - S_{q^*}) \mod p^*$

4. Compute
 (a) $c_1 \equiv (S^* - s_1 + 1) \mod r_1$
 (b) $c_2 \equiv (S^* - s_2 + 1) \mod r_2$

5. For a l-bit integer r_3, set $\gamma = \left\lfloor \frac{(r_3 \cdot c_1 + (2^l - r_3) \cdot c_2)}{2^l} \right\rfloor$

6. Return $S \equiv (S^*)^\gamma \mod N$
Faulty Execution

Ciet & Joye Algorithm

Input: \(\dot{m}, \{p, q, d_p, d_q\} \)
Output: \(S = \dot{m}^d \mod N \)
Parameters: \(\kappa, l \)

1. For two \(\kappa \)-bit random integers \(r_1 \) and \(r_2 \)
 - (a) \(p^* = r_1 \cdot p \)
 - (b) \(q^* = r_2 \cdot q \)
 - (c) \(i_{q^*} = (q^*)^{-1} \mod p^* \)
 - (d) \(N = p \cdot q \)

2. Compute
 - (a) \(\hat{S}^p_{\kappa} \equiv \dot{m}^{d_p} \mod p^* \) and \(s_2 \equiv \dot{m}^{d_q} \mod \varphi(r_2) \mod r_2 \)
 - (b) \(\hat{S}^q_{\kappa} \equiv \dot{m}^{d_q} \mod q^* \) and \(s_1 \equiv \dot{m}^{d_p} \mod \varphi(r_1) \mod r_1 \)

3. Compute \(\hat{S}^*_{\kappa} \equiv S_{\kappa}^* + q^* \cdot i_{q^*} \cdot (\hat{S}^p_{\kappa} - S_{\kappa}^q) \mod p^* \)

4. Compute
 - (a) \(c_1 \equiv (S^* - s_1 + 1) \mod r_1 \)
 - (b) \(c_2 \equiv (S^* - s_2 + 1) \mod r_2 \)

5. For a \(l \)-bit integer \(r_3 \), set \(\gamma = \left\lfloor \frac{r_3 \cdot c_1 + (2^l - r_3) \cdot c_2}{2^l} \right\rfloor \)

6. Return \(S \equiv (S^*)^\gamma \mod N \)
Ciet & Joye Algorithm

Input: \(\dot{m}, \{p, q, d_p, d_q\} \)
Output: \(S = \dot{m}^d \mod N \)
Parameters: \(\kappa, l \)

1. For two \(\kappa \)-bit random integers \(r_1 \) and \(r_2 \)
 (a) \(p^* = r_1 \cdot p \),
 (b) \(q^* = r_2 \cdot q \),
 (c) \(i_{q^*} = (q^*)^{-1} \mod p^* \),
 (d) \(N = p \cdot q \).
2. Compute
 (a) \(\hat{S}_{p^*} \equiv \dot{m}^{d_p} \mod p^* \) and \(s_2 \equiv \dot{m}^{d_q} \mod \varphi(r_2) \mod r_2 \),
 (b) \(S_{q^*} \equiv \dot{m}^{d_q} \mod q^* \) and \(s_1 \equiv \dot{m}^{d_p} \mod \varphi(r_1) \mod r_1 \).
3. Compute \(\hat{S}^* \equiv S_{q^*} + q^* \cdot i_{q^*} \cdot (\hat{S}_{p^*} - S_{q^*}) \mod p^* \).
4. Compute
 (a) \(\hat{c}_1 \equiv (\hat{S}^* - s_1 + 1) \mod r_1 \)
 (b) \(\hat{c}_2 \equiv (\hat{S}^* - s_2 + 1) \mod r_2 \).
5. For a \(l \)-bit integer \(r_3 \), set \(\gamma = \left\lfloor \frac{(r_3 \cdot c_1 + (2^l - r_3) \cdot c_2)}{2^l} \right\rfloor \).
6. Return \(S \equiv (S^*)^\gamma \mod N \).
Faulty Execution

Ciet & Joye Algorithm

Input: \(\hat{m}, \{p, q, d_p, d_q\} \)

Output: \(S = \hat{m}^d \mod N \)

Parameters: \(\kappa, l \)

1. For two \(\kappa \)-bit random integers \(r_1 \) and \(r_2 \)
 - (a) \(p^* = r_1 \cdot p \)
 - (b) \(q^* = r_2 \cdot q \)
 - (c) \(i_{q^*} = (q^*)^{-1} \mod p^* \)
 - (d) \(N = p \cdot q \)

2. Compute
 - (a) \(\hat{S}_p^* \equiv \hat{m}^{dp} \mod p^* \) and \(s_2 \equiv \hat{m}^{dq} \mod \varphi(r_2) \mod r_2 \)
 - (b) \(\hat{S}_q^* \equiv \hat{m}^{dq} \mod q^* \) and \(s_1 \equiv \hat{m}^{dp} \mod \varphi(r_1) \mod r_1 \)

3. Compute \(\hat{S}^* \equiv \hat{S}_q^* + q^* \cdot i_{q^*} \cdot (\hat{S}_p^* - \hat{S}_q^*) \mod p^* \)

4. Compute
 - (a) \(\hat{c}_1 \equiv (\hat{S}^* - s_1 + 1) \mod r_1 \)
 - (b) \(\hat{c}_2 \equiv (\hat{S}^* - s_2 + 1) \mod r_2 \)

5. For a \(l \)-bit integer \(r_3 \), set \(\hat{\gamma} = \left\lfloor \frac{(r_3 \cdot \hat{c}_1 + (2^l - r_3) \cdot \hat{c}_2)}{2^l} \right\rfloor \)

6. Return \(S \equiv (S^*)^\gamma \mod N \)
Faulty Execution

Ciet & Joye Algorithm

Input:	\(\dot{m}, \{p, q, d_p, d_q\} \)
Output:	\(S = \dot{m}^d \mod N \)
Parameters:	\(\kappa, l \)

1. For two \(\kappa \)-bit random integers \(r_1 \) and \(r_2 \)
 (a) \(p^* = r_1 \cdot p \),
 (b) \(q^* = r_2 \cdot q \),
 (c) \(i_{q^*} = (q^*)^{-1} \mod p^* \),
 (d) \(N = p \cdot q \).
2. Compute
 (a) \(S_{p^*} = \dot{m}^{d_p} \mod p^* \) and \(s_2 = \dot{m}^{d_q} \mod \varphi(r_2) \mod r_2 \),
 (b) \(S_{q^*} = \dot{m}^{d_q} \mod q^* \) and \(s_1 = \dot{m}^{d_p} \mod \varphi(r_1) \mod r_1 \).
3. Compute \(\hat{S}^* = S_{q^*} + q^* \cdot i_{q^*} \cdot (S_{p^*} - S_{q^*}) \mod p^* \)
4. Compute
 (a) \(\hat{c}_1 = (\hat{S}^* - s_1 + 1) \mod r_1 \)
 (b) \(\hat{c}_2 = (\hat{S}^* - s_2 + 1) \mod r_2 \)
5. For a \(l \)-bit integer \(r_3 \), set \(\hat{\gamma} = \left[\frac{(r_3 \cdot \hat{c}_1 + (2^l - r_3) \cdot \hat{c}_2)}{2^l} \right] \)
6. Return \(\hat{S} = (\hat{S}^*)^{\hat{\gamma}} \mod N \)
Outline

1. Introduction
 - Previous work
 - Overview of our attack

2. Attack principle
 - Ciet & Joye Countermeasure
 - Fault Model
 - Faulty Execution
 - Fault Analysis

3. Conclusion
Fault Analysis

Consequences of the fault

The faulty result S_p^* has been modeled as:

$$S_p^* = S_p^* \oplus R_B \cdot 2^{8i}$$
Consequences of the fault

The faulty result \hat{S}_p^* has been modeled as:

$$\hat{S}_p^* = S_p^* \oplus R_8 \cdot 2^{8i}$$

Then, the fault infects the check values:

$$\hat{c}_1 \equiv (\hat{S}_p^* - s_1 + 1) \mod r_1$$
$$\equiv 1 + R_8 \cdot 2^{8i} \mod r_1$$
$$\approx 1 + R_8 \cdot 2^{8i}$$

$$\hat{c}_2 \equiv (\hat{S}_p^* - s_2 + 1) \mod r_2$$
$$\equiv 1 \mod r_2$$
Fault Analysis

Consequences of the fault

The faulty result S_p^* has been modeled as:

$$S_p^* = S_p^* \oplus R_8 \cdot 2^{8i}$$

Then, the fault infects the check values:

$$\hat{c}_1 \equiv (\hat{S}^* - s_1 + 1) \mod r_1$$
$$\equiv 1 + R_8 \cdot 2^{8i} \mod r_1$$
$$\approx 1 + R_8 \cdot 2^{8i}$$

$$c_2 \equiv (\hat{S}_p^* - s_2 + 1) \mod r_2$$
$$\equiv 1 \mod r_2$$

So, the erroneous exponent $\hat{\gamma}$ can be written as:

$$\hat{\gamma} = \left\lfloor \frac{(r_3 \cdot \hat{c}_1 + (2^l - r_3) \cdot c_2)}{2^l} \right\rfloor$$
$$= \left\lfloor \frac{R_8 \cdot r_3 \cdot 2^{8i}}{2^l} \right\rfloor + 1$$
Fault Analysis

- Bit distribution of $R_8 \cdot r_3 \cdot 2^{8i}$

\[
\begin{array}{ccccccc}
0 & 0 & \cdots & 0 & R_8 \cdot r_3 & \cdots & R_8 \cdot r_3 & 0 & \cdots & 0 & 0 \\
\kappa + \ell & \ell + 8i + 8 & 8i & 0
\end{array}
\]
Fault Analysis

- Bit distribution of $R_8 \cdot r_3 \cdot 2^{8i}$

- Result of the right shift by l bits if $l > 8i$:

\[
\begin{array}{c|c|c|c|c}
\kappa + l & l + 8i + 8 & 8i & 0 \\
\hline
0 & 0 & \ldots & 0 & R_8 r_3 & \ldots & R_8 r_3 & 0 & \ldots & 0 & 0 \\
\end{array}
\]
Fault Analysis

- Bit distribution of $R_8 \cdot r_3 \cdot 2^{8i}$

- Result of the right shift by l bits if $l > 8i$:
Fault Analysis

- Bit distribution of $R_8 \cdot r_3 \cdot 2^{8i}$

- Result of the right shift by l bits if $l > 8i$:
Fault Analysis

- Bit distribution of $R_8 \cdot r_3 \cdot 2^{8i}$

- Result of the right shift by l bits if $l > 8i$:

- Result of the right shift by l bits if $l < 8i$ and $l < \kappa$:
Fault Analysis

- Bit distribution of $R_8 \cdot r_3 \cdot 2^{8i}$

- Result of the right shift by l bits if $l > 8i$:

- Result of the right shift by l bits if $l < 8i$ and $l < \kappa$:
Fault Analysis

- Bit distribution of $R_8 \cdot r_3 \cdot 2^{8i}$

- Result of the right shift by l bits if $l > 8i$:

- Result of the right shift by l bits if $l < 8i$ and $l < \kappa$:
Fault Analysis

- Bit distribution of $R_8 \cdot r_3 \cdot 2^{8i}$

- Result of the right shift by l bits if $l > 8i$:

- Result of the right shift by l bits if $l < 8i$ and $l < \kappa$:

$\Rightarrow \hat{\gamma}$ is a random value located on LSB or MSB.
Fault Analysis

First, one can advantageously notice that:

\[\hat{S}^e \mod N = \hat{m}d \cdot e \cdot \hat{\gamma} \mod N \]

\[= \hat{m} \cdot \hat{\gamma} \mod N \]
Fault Analysis

- First, one can advantageously notice that:

\[\hat{S}^e \mod N = \hat{m}^{d \cdot e \cdot \hat{\gamma}} \mod N = \hat{m}^{\hat{\gamma}} \mod N \]

- Then, the attacker tries to find \(\hat{\gamma} \)'s value to factorize the public modulus \(N \)
Fault Analysis

First, one can advantageously notice that:

\[\hat{S}^e \mod N = \hat{m}^{d \cdot e \cdot \gamma} \mod N = \hat{m}^{\gamma} \mod N \]

Then, the attacker tries to find \(\gamma \)'s value to factorize the public modulus \(N \)

Attack algorithm

1. The attacker chooses a candidate value for \(\gamma \)
2. The attacker computes:

\[q' = \gcd((\hat{S}^e - \hat{m}^{\gamma}) \mod N, N) \]

3. Hence,

 (a) if \(q' = 1 \), then the attacker tries again for another candidate,

 (b) \(q' \neq 1 \), then \(q' \) is a prime factor of \(N \).
Performance

- Success probability for a fault that suits the model

\[
\Pr(\text{success}) = \Pr \left[C_1 \approx 1 + R_8 \cdot 2^{8i} \ & \ \hat{\gamma} \text{ is recoverable by brute force} \right]
\]

\[
= \Pr \left[1 + R_8 \cdot 2^{8i} < r_1 \ & \ \text{length}(\hat{\gamma}) < B_f \right]
\]
Performance

- Success probability for a fault that suits the model

\[\text{Pr}(\text{success}) = \text{Pr}\left[\hat{c}_1 \approx 1 + R_8 \cdot 2^{8i} \& \hat{\gamma} \text{ is recoverable by brute force} \right] \]

\[= \text{Pr}\left[1 + R_8 \cdot 2^{8i} < r_1 \& \text{length}(\hat{\gamma}) < B_f \right] \]

- For \(n = 1024 \) bits, \(\kappa = l = 80 \) bits and \(B_f = 40 \) bits

\[
\Pr(\text{success}) \approx 5.4\% \text{ for a suitable fault}
\]

The success probability increases by lengthening the brute force search.

(For 83 suitable faults, the success rate is bigger than 99%)
Success probability for a fault that suits the model

\[
\Pr(\text{success}) = \Pr \left[\hat{c}_1 \approx 1 + R_8 \cdot 2^{8i} \ \& \ \hat{\gamma} \text{ is recoverable by brute force} \right]
\]

\[
= \Pr \left[1 + R_8 \cdot 2^{8i} < r_1 \ \& \ \text{length}(\hat{\gamma}) < B_f \right]
\]

For \(n = 1024 \) bits, \(\kappa = l = 80 \) bits and \(B_f = 40 \) bits

- \(\Pr(\text{success}) \approx 5.4\% \) for a suitable fault
Performance

- Success probability for a fault that suits the model

\[
\Pr(\text{success}) = \Pr [\hat{C}_1 \approx 1 + R_8 \cdot 2^{8i} \& \hat{\gamma} \text{ is recoverable by brute force}]
\]

\[= \Pr [1 + R_8 \cdot 2^{8i} < r_1 \& \text{length}(\hat{\gamma}) < B_f] \]

- For \(n = 1024\) bits, \(\kappa = l = 80\) bits and \(B_f = 40\) bits
 - \(\Pr(\text{success}) \approx 5.4\%\) for a suitable fault
 - The success probability increases by lengthening the brute force search
Performance

- Success probability for a fault that suits the model

\[
\Pr(\text{success}) = \Pr \left[\hat{c}_1 \approx 1 + R_8 \cdot 2^{8i} \land \hat{\gamma} \text{ is recoverable by brute force} \right]
\]

\[
= \Pr \left[1 + R_8 \cdot 2^{8i} < r_1 \land \text{length}(\hat{\gamma}) < B_f \right]
\]

- For \(n = 1024 \) bits, \(\kappa = l = 80 \) bits and \(B_f = 40 \) bits
 - \(\Pr(\text{success}) \approx 5.4\% \) for a suitable fault
 - The success probability increases by lengthening the brute force search

- For 83 suitable faults, the success rate is bigger than 99%
Conclusion

- The proposed fault model can be extended to a less restrictive one.
Conclusion

- The proposed fault model can be extended to a less restrictive one

- The attack has been extensively simulated using GMP Library
Conclusion

- The proposed fault model can be extended to a less restrictive one

- The attack has been extensively simulated using GMP Library

- This attack works against a protected CRT-RSA implementation...
Conclusion

- The proposed fault model can be extended to a less restrictive one

- The attack has been extensively simulated using GMP Library

- This attack works against a protected CRT-RSA implementation...

- ...but it can be avoided by
 - Forcing the modular reduction during \hat{c}_1 computation
Conclusion

- The proposed fault model can be extended to a less restrictive one.

- The attack has been extensively simulated using GMP Library.

- This attack works against a protected CRT-RSA implementation . . .

- . . . but it can be avoided by
 - Forcing the modular reduction during \hat{c}_1 computation
 - Replacing the final step by the proposed variant and returning

$$S = (\gamma \cdot S^* \oplus (\gamma - 1) \cdot r)$$

Practical Fault Countermeasures for Chinese Remaindering Based RSA (JC05)

FDTC 2005
Conclusion

- Thank you for your attention!