Round Reduction Using Faults

Hamid Choukri, Michael Tunstall
Security Technologies Department
(hamid.choukri - michael.tunstall) @gemplus.com
Description

- **The objective**
 - Break secret keys in very short time.

- **The target**
 - Secret key algorithms based on a function that is computed iteratively such as the DES (Data Encryption Standard) or the AES (Advanced Encryption Standard).

- **The implementation**
 - Naïve implementation of AES without counter measures.

- **The operating mode**
 - A combination of fault attack injection and a cryptanalysis.
 - The fault type is a transient glitch on Vcc (power supply)
Fault configuration

• The chip analysis and tolerance
 ▪ Applied voltage
 • The normal voltage is 5 Volts.
 • The voltage varied from 3 volts to 5 volts.
 ▪ External frequency
 • The normal frequency is 5 MHz
 • The frequency varied from 1 MHz to 5 MHz.
 ▪ Glitch duration.
 • The glitch varied from 1 to 10 clock cycle

• Find optimal configuration for voltage/Frequency/Glitch
Fault Injection Equipment
Fault Target

```
movlw 0Ah
movwf RoundCounter
RoundLabel:
call RoundFunction
decfsz RoundCounter
goto RoundLabel
call AddRoundKey
```

RoundFunction:
call AddRoundKey
call ShiftRows
call SubBytes
call MixColumns
call KeySchedule
ret

Sensitive Locations

Decrement Task:
RoundCounter <= RoundCounter – 1

Testing Task:
If (RoundCounter == 0)
 Status <= 1
Else
 Status <= 0

Jump Task:
If (Status == 1)
 PC <= PC1
Else
 PC <= PC2
Processing Localization

• A naive implementation.
• Rounds are visible in the power consumption.
The Fault Target

- A glitch was injected at a number of points where the end of the first round was assumed to be.

- This was done with a card with a known key to be able to detect when a successful fault occurred.

- It is also possible to be done with unknown key, but we will have the check IO time execution and the status returned by the card.
Detecting a Fault (Power Supply)

- Normal Execution
- Faulted Execution
Detecting a Fault (I/O Com)

Normal Execution

Faulted Execution
Results interpretation

- 2 faulty cipher-texts, will be:

  ```
  AddRoundKey();
  ShiftRows();
  SubBytes();
  MixColumns();
  AddRoundKey();
  AddRoundKey();
  ShiftRows();
  SubBytes();
  AddRoundKey();
  ```

- Depending on the implementation
Using the Results

• With messages m_1 and m_2, producing cipher texts c_1 and c_2.
• Bytewise exhaustive search for k, in equations:

\[
\text{SubBytes} (m_1 \oplus k) \oplus \text{SubBytes} (m_2 \oplus k) = \text{MixColumn}^{-1} (c_1 \oplus c_2)
\]

\[
\text{SubBytes} (m_1 \oplus k) \oplus \text{SubBytes} (m_2 \oplus k) = (c_1 \oplus c_2)
\]

• Each equation will give 2^{16} possible hypothesis for k.
• In our case the equation to use was known.
• A wrong fault location injection with a faulty result could be easily removed from the acquired result ($P=3.14 \times 10^{-3}$).
Other algorithms

• The attack could be applied to other secret key algorithms since the only difference is in the manner in which the result is exploited.

• As example, the DES reduction to one round give a key-space of 2^{24} to be searched from one corrupt ciphertext.
Counter measures

- Redundancy check of RoundCounter.
- Repeat all or part of the algorithm.
- Add Random delay so that it is difficult to find the correct position.
- Microcontroller with glitch sensor.
- ...
Conclusion

• The round reduction is experimentally possible in presence of naïve implementation and without hardware counter measures.

• The attack requires a high degree of control with regard to where the fault take place but relatively little calculation after acquiring the desired corrupt cipher-texts.

• Other fault attacks are possible exploiting the mathematical properties but needs more complex post-treatment.
Thank you

Contacts:

hamid.choukri@gemplus.com

michael.tunstall@gemplus.com or m.j.tunstall@rhul.ac.uk