A Fault Attack on Pairing Based Cryptography

Dan Page (Bristol) and Fré Vercauteren (KU Leuven)

FDTC 2005
Introduction

- Pairing based cryptography is a (fairly) new area:
 - Has provided new instantiations of Identity Based Encryption.
 - Has provided a wealth of new “hard problems” and proof techniques.
 - Has opened a new area for those interested in implementation.
- Like all new ideas, we want to have a good understanding of the security properties:
 - More and more, such properties include resilience to side-channel and fault attack.
 - In reality, it is just fun to try and break things.
- Our goal here is to start looking at fault attacks on the pairing.
Pairing Based Cryptography (1)

- For our purposes, the **pairing** is just a map between groups:

 \[e : \mathbb{G}_1 \times \mathbb{G}_1 \rightarrow \mathbb{G}_2 \]

 where we usually set \(\mathbb{G}_1 = E(\mathbb{F}_q) \) and \(\mathbb{G}_2 = \mathbb{F}_{q^k} \).

- The main interesting property of the map is termed **bilinearity**:

 \[e(a \cdot P, b \cdot Q) = e(P, Q)^{a \cdot b} \]

 which means we can play about with the exponents at will.

- To work in a useful way, the map also needs to be:
 - **Non-degenerate**, i.e. not all \(e(P, Q) = 1 \).
 - **Computable**, i.e. we can evaluate \(e(P, Q) \) easily.

- In real applications we generally use the **Tate** or **Weil** pairing.
Such pairings were originally thought to only be useful in a destructive setting.

Boneh-Franklin identity based encryption is perhaps the most interesting constructive use:

- The trust authority or TA has a public key $P_{TA} = s \cdot P$ for a public value P and secret value s.
- A users public key is calculated from the string ID using a hash function as $P_{ID} = H_1(ID)$.
- A users secret key is calculated by the TA as $S_{ID} = s \cdot P_{ID}$.

To encrypt M, select a random r and compute the tuple:

$$C = (r \cdot P, M \oplus H_2(e(P_{ID}, P_{TA})^r)).$$

To decrypt $C = (U, V)$, we compute the result:

$$M = V \oplus H_2(e(S_{ID}, U)).$$
Pairing Based Cryptography (3)

▶ We are interested in the case where \(q = 3^m \) and \(k = 6 \) since this is attractive from a parameterisation perspective.

▶ Along with the standard Miller-style BKLS algorithm, there are two closed-form algorithms in this case.

▶ Both compute \(e(P, Q) \) with \(P = (x_1, y_1) \) and \(Q = (x_2, y_2) \).

The Duursma-Lee Algorithm

\[
\begin{align*}
f & \leftarrow 1 \\
\text{for } i = 1 \text{ upto } m \text{ do} \\
x_1 & \leftarrow x_1^3 \\
y_1 & \leftarrow y_1^3 \\
\mu & \leftarrow x_1 + x_2 + b \\
\lambda & \leftarrow -y_1y_2\sigma - \mu^2 \\
g & \leftarrow \lambda - \mu\rho - \rho^2 \\
f & \leftarrow f \cdot g \\
x_2 & \leftarrow x_2^{1/3} \\
y_2 & \leftarrow y_2^{1/3} \\
\text{return } f q^3 - 1
\end{align*}
\]

The Kwon-BGOS Algorithm

\[
\begin{align*}
f & \leftarrow 1 \\
x_2 & \leftarrow x_2^3 \\
y_2 & \leftarrow y_2^3 \\
d & \leftarrow mb \\
\text{for } i = 1 \text{ upto } m \text{ do} \\
x_1 & \leftarrow x_1^9 \\
y_1 & \leftarrow y_1^9 \\
\mu & \leftarrow x_1 + x_2 + d \\
\lambda & \leftarrow y_1y_2\sigma - \mu^2 \\
g & \leftarrow \lambda - \mu\rho - \rho^2 \\
f & \leftarrow f^3 \cdot g \\
y_2 & \leftarrow -y_2 \\
d' & \leftarrow d - b \\
\text{return } f q^3 - 1
\end{align*}
\]
The Fault Attack (1)

- **Goal**: given the result \(R = e(P, Q) \) and knowledge of \(Q \), find \(P \).
- To make things easier, assume we use the Duursma-Lee algorithm and can reverse the final powering by \(q^3 - 1 \).
- Let \(e_{\Delta} \) denote the pairing where we replace the loop bound \(m \) with \(\Delta \) so instead of producing the product:

\[
\prod_{i=1}^{m} \left((-y_1^{3i} y_2^{1/3^{i-1}} \sigma - (x_1^{3i} + x_2^{1/3^{i-1}} + b)^2) - (x_1^{3i} + x_2^{1/3^{i-1}} + b)\rho - \rho^2 \right)
\]

the instead produces:

\[
\prod_{i=1}^{\Delta} \left((-y_1^{3i} y_2^{1/3^{i-1}} \sigma - (x_1^{3i} + x_2^{1/3^{i-1}} + b)^2) - (x_1^{3i} + x_2^{1/3^{i-1}} + b)\rho - \rho^2 \right)
\]

- If we can force the device to compute \(R_1 = e_{m\pm r+0}(P, Q) \) and \(R_2 = e_{m\pm r+1}(P, Q) \) by provoking some random error \(r \), then \(T = R_1 / R_2 \) gives just one factor of the product.
With just one factor, we can extract recover x_1 and y_1 given knowledge of x_2, y_2, r and b:

- We make the target device to lots of pairings and provoke random errors in the value of m to get $m \pm r$.
- Using a passive timing attack, we can tell how many loop iterations are done and hence what r was.
- A usable pair of $m \pm r + 0$ and $m \pm r + 1$ will come along after not too many attempts due to a similar argument as the birthday paradox.
- Finally, we use the collected results to recover the secret point.

Boneh-Franklin survives this attack because it doesn’t allow the attacker to get direct access to pairing results, other schemes are less secure ...
So far, we side-stepped the problem of reversing the final powering:

- We assumed we compute \(T = R_1 / R_2 \) but actually we get \(T^{q^3 - 1} \).

Lidl and Niederreiter describe a method to compute roots of \(X^{q^3} - T = 0 \) which they call a \textit{q-polynomial}.

We have \(X^{q^3 - 1} - T = 0 \) so we just multiply by \(X \) to get \(X^{q^3} - TX = 0 \).

Then we just use their text-book method:

- Write \(X = x_0 + \sigma x_1 \) and \(T = t_0 + \sigma t_1 \) with \(x_0, x_1, t_0, t_1 \in \mathbb{F}_{q^3} \).
- The above equation is equivalent to

\[
M \cdot X = \begin{pmatrix} 1 - t_0 & t_1 \\ t_1 & 1 + t_0 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = 0.
\]

- The kernel of \(M \) then provides all solutions to \(X^{q^3 - 1} - R = 0 \).
The Fault Attack (4)

- The problem now is that there are $q^3 - 1$ possible roots and we want to find one specific root!
- We are saved from failure because factors from the Duursma-Lee algorithm have a sparse form:

$$T = t_0 + t_1 \rho - \rho^2 + t_2 \sigma$$

where there are no $\rho \sigma$ or $\rho^2 \sigma$ coefficients.
- From the root finding algorithm we get $T' = c \cdot T$ for some $c \in \mathbb{F}_{q^3}$.
- The goal is to compute $d = c^{-1} = T / T'$ and hence T which boils down to solving:

$$\begin{pmatrix} t'_1 & t'_0 + t'_1 \\ t'_2 & t'_1 \end{pmatrix} \begin{pmatrix} d_0 \\ d_1 \end{pmatrix} = \begin{pmatrix} t'_1 + t'_2 \\ t'_0 + t'_2 \end{pmatrix}.$$

All is not lost, we can use bilinearity to try and **defend** against the attack by **denying** the attacker knowledge of x_2 and y_2:

- Pick random integers a and b so that $a \cdot b = 1 \pmod{\#G_1}$.
- Take our P and Q and compute $P' = a \cdot P$ and $Q' = b \cdot Q$.
- Now calculate the pairing as:

$$e(P', Q') = e(a \cdot P, b \cdot Q) = e(P, Q)^{a \cdot b} = e(P, Q).$$

The difference is, now the values going into the pairing are **randomised**: trying to apply the attack yields random stuff rather than the required value.

Software defences like this are probably preferable to changing the hardware since this is costly and hard to get right.
Conclusion

- This is quite a **nice** but fairly **trivial** attack on pairing based cryptography.
 - In reality, unless the protocol is badly designed the attack is probably unrealistic.
- However, this is a **new topic** and there are plenty of interesting **open problems** to think about:
 - What happens if P or Q are not on any curve?
 - What happens if P or Q are not on the expected curve?
 - What happens if F_q is faulty?
 - How can one attack the BKLS algorithm rather than the closed form versions?
- The pairing is **quite resilient** to most things we can think of:
 - The final powering mops up dodgy outputs and forces the pairing to be degenerate.
 - Maybe the answer is to attack protocols rather than the pairing itself ...